API RPxbb 9b ME 07322490 055L754 (55 W

Recommended Practices for
Exploration and Production Data
Digital Interchange

APl RECOMMENDED PRACTICE 66, V2
SECOND EDITION, JUNE 1996

American
L Petroleum

Institute

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

API RPxbbh 9b WM 0732290 D55L755 TH9]l WA

Recommended Practices for
Exploration and Production Data
Digital Interchange

@ API RECOMMENDED PRACTICE 66, V2
SECOND EDITION, JUNE 1996

American
. LI) Petroleum

Institute

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

API RPxgb 9t HB D732290 0556756 9284 HM

SPECIAL NOTES

API publications necessarily address problems of a general nature. With respect to par-
ticular circumstances, local, state, and federal laws and regulations should be reviewed.

API is not undertaking to meet the duties of employers, manufacturers, or suppliers to
warn and properly train and equip their employees, and others exposed, concerning health
and safety risks and precautions, nor undertaking their obligations under local, state, or
federal laws.

Information concerning safety and health risks and proper precautions with respect to
particular materials and conditions should be obtained from the employer, the manufac-
turer or supplier of that material, or the material safety data sheet,

Nothing contained in any API publication is to be construed as granting any right, by
implication or otherwise, for the manufacture, sale, or use of any method, apparatus, or
product covered by letters patent. Neither should anything contained in the publication be
construed as insuring anyone against liability for infringement of letters patent.

Generally, API standards are reviewed and revised, reaffirmed, or withdrawn at least
every five years. Sometimes a one-time extension of up to two years will be added to this
review cycle. This publication will no longer be in effect five years after its publication
date as an operative API standard or, where an extension has been granted, upon republica-
tion. Status of the publication can be ascertained from the API Authoring Department
ftelephone (202) 682-8000]. A catalog of API publications and materials is published
annually and updated quarterly by API, 1220 L Street, N.W., Washington, D.C. 20005.

This document was produced under API standardization procedures that ensure appro-
priate notification and participation in the developmental process and is designated as an
API standard. Questions concerning the interpretation of the content of this standard or
comments and questions concerning the procedures under which this standard was devel- .
oped should be directed in writing to the director of the Authoring Department (shown on
the title page of this document), American Petroleum Institute, 1220 L Street, N.W., Wash-
ington, D.C. 20005. Requesis for permission to reproduce or translate all or any part of the
material published herein should also be addressed to the director.

API publications may be used by anyone desiring to do so. Every effort has been made
by the Institute to assure the accuracy and reliability of the data contained in them; how-
ever, the Institute makes no representation, warranty or guarantee in connection with this
publication and hereby expressly disclaims any liability or responsibility for loss or dam-
age resulting from its use or for the violation of any federal, state, or municipal regulation
with which this publication may conflict.

API standards are published to facilitate the broad availability of proven, sound engi-
neering and operating practices. These standards are not intended to obviate the need for
applying sound engineering judgment regarding when and where these standards should
be utilized. The formulation and publication of API standards is not intended in any way to
inhibit anyone from using any other practices.

Any manufacturer marking equipment or materials in conformance with the marking
requirements of an API standard is solely responsible for complying with all the applica-
bie requirements of that standard. API does not represent, warrant, or guarantee that such
products do in fact conform to the applicable API standard.

All rights reserved. No part of this work may be reproduced, stored in a retrieval system,
or transmitted by any means, electronic, mechanical, photocopying, recording or other-
wise, without prior written permission from the publisher. Contact the Publisher, API
Publishing Services, 1220 L Street, N.W., Washington, D.C. 20005.

Copyright © 1996 American Petroleum Institute

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

API RPxbb 9b EE (0732290 0556757 AL4 EH

. FOREWORD

This recommended practice was prepared by the Subcommittee on Standard Format for
Digital Well Data. This standard is under the administration of the American Petrolenm
Institute Exploration and Production Department’s Executive Commitiee on Drilling and
Production Practices.

Background and Purpose

A wide variety of digital data is acquired, exchanged, and stored by petrolenmn industry
businesses using an equally wide variety of data formats. Most of these formats have been
around for many years and were designed for very specific needs. As a result, they reflect
the limitations of early computing hardware and are typically oriented to one type of data.
Although relatively simple to implement, many formats lack the flexibility or sufficient
self-descriptive features to accommodate evolving data exchange needs.

Recommended Practice 66, Version | (RP66, V1) was introduced by the API in 1991 as
an enhanced exchange format for well data. It incorporated the useful features of earlier
formats and extended them by removing some of their historical limitations. The primary
features of APl Recommended Practice 66, Version 1 were machine independence, self-
description, semantic extensibility, and efficient handling of bulk data. It has been imple-
mented and is used widely for exchange of well data.

Following the introduction of API Recommended Practice 66 by the APIL, a number of
efforts by other oil industry groups to develop data exchange formats began to mature and
. converge toward the adoption of API Recommended Practice 66, creating a major oppor-
tunity to have just one standard exchange format for all oilfield data. However, the strong
bias of API Recommended Practice 66 toward well data was a stumbling block. In addi-
tion, introduction of new high-capacity storage devices created a need to expand the API
Recommended Practice 66 physical binding mechanism, and experience in using API
Recommended Practice 66 generated ideas for improvements. Working closely with other
industry groups, the API Subcommittee on Recormmended Format for Well Data devel-
oped a set of modifications to API Recommended Practice 66, which have resulted in the
current API Recornmended Practice 66, Version 2 (RP66, V2), which is described in this
document.

API Recommended Practice 66, Version 2 retains the essential features of AP1 Recom-
mended Practice 66, Version 1 and is completely upward compatible, That is, any data
recorded under APT Recommended Practice 66, Version 1 can be transiated into API Rec-
ommended Practice 66, Version 2 format.

The following list summarizes the differences between API Recommended Practice 66,
Version | and API Recommended Practice 66, Version 2.

1. Separate well data object types from neutral data object types.
Public object types from API Recommended Practice 66, Version 1 are separated
into two groups, both administered by the API Subcommittee on Recommended
Format for Well Data. One group consists of basic object types having no well data
bias. This is referred 1o as the basic schema, described in Part 6, and is adminis-
tered under organization code O (zero). The second group consists of all the rest
and is administered under organization code 66. This group, described in Part 8, is
. referred to as the DLIS schema.

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

API RPxbb 96 EM 0732290 0556754 ?T0 W

2. Add new attributes and symbolic codes.
The following are added: DIMENSION and AXIS attributes to CALIBRATION-
COEFFICIENT, DATE attribute to CALIBRATION, KIND attribute to
CHANNEL, PARAMETER, and COMPUTATION, DESCRIPTION attribute to
all object types, EXTENDED-ATTRIBUTES attribute to all object types except
FILE-HEADER and ORIGIN, new codes for TYPE attribute of EQUIPMENT, and
new codes for PROPERTIES attribute {many object types).

3. Allow COORDINATES attribute of AXIS to reference a CHANNEL object.
This permits dynamically changing coordinates,

4. Add new representation codes and representation code classes.
The following codes are new: RNORM, RLONG, ISNORM, ISLONG, IUNORM,
[ULONG, IRNORM, IRLLONG, TIDENT, TUNGRM, TASCII, LOGICL,
BINARY, FRATIO, DRATIO. All representation codes are grouped into classes of
related representations. A restriction in the definition of an attribute to any member
of a class allows use of any other member of the class.

5. Extend ASCII to include ISO 8859-1, and allow string padding.
The sel of allowable characters in an ASCII string is entarged. In addition,
character subfields in all representations may be padded by using a terminating nuil
(zero) character. The string count may include characters past the null, but such
characters are not considered part of the string data. This supports in-place editing
of API Recommended Practice 66 data.

6. Change copy number (in OBNAME) from USHORT to UVARL
A maximum of 256 instances of a named object was seen as potentially limiting for
some applications.

7. Extend unit expression syntax and add new unit symbols.
The unit expression syntax supports additional types of units, for example units
with fractional exponents, and use of multiple sets of parentheses to improve
meaning. A more comprehensive set of SI unit symbols and a set of monetary unit
symbols are added to the unit dictionary.

8. Allow use of multiple unit models.
In addition to the unit model described by API as part of API Recommended
Practice 66, provision is made to identify and use other unit models having
different sets of unit symbols.

9. Uncontrol EQUIPMENT identifiers.
These identifiers are no longer required to be in a dictionary. Attributes TYPE and
TRADEMARK-NAME suffice to identify equipment.

10. Require distinct object names in a logical file.
This rule, that no two object names can match all three subfields (origin, copy
number, identifier), makes an object name a unique reference. It is no longer
necessary for a reader to know the object type to resolve the reference.

11. Revise ORIGIN.
Well data attributes are removed and put into a new DLIS-CONTEXT object type
in the DLIS schema. New attributes are added to identify schema and unit model.

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

13.

14.

16.

17

20,

API RPxbbk S9b EE (073c2e90 0556759 £37 W

. Support use of multiple schemas.

The terms Private and Public are removed. All schemas are implemented equally
with the only exception being mandatory (and exclusive) use of FILE-HEADER
and ORIGIN object types from the basic schema. Mechanics to make this work
include TIDENT representation of set types and attribute enumerations, and
removal of logical record type numbers,

Remove rule restricting ordering of EFLRs and IFLRs.
An attribute in one set (EFLR) may reference an object in another set even if the
two sets are separated by an IFLR.

Remove special constraints on representation of FILE-HEADER attributes.
The attributes of a FILE-HEADER object are no longer constrained regarding
length and order.

Neutralize FRAME and CHANNEL and support multiple frames per record.
Adttributes of these objects are revised to remove the well data bias. In addition,
multiple frames per record are supported. This allows some applications to increase
performance for reading and writing bulk data. In addition to dimensioned arrays,
channel values may now also be described as aggregates {similar to “‘ragged
arrays’).

Replace channel dimension updates with explicitly-sized channels.
Provisions are made to write explicitly-sized channels by optionally recording
channel dimensions directly in frames. Correspondingly, the DIMENSION
attribute of CHANNEL is no longer updatable.

Add new information to storage unit label.

The following fields are added: binding version, producer code, creation date, and
serial number. The size of maximum record length is increased.

Expand visible record header and logical record segment header.

The maximum length of a visible record is increased from a 16-bit quantity to a 32-
bit quantity, and similarly for lengths in the logical record segment. This allows
binding onto very large tape blocks (megabyte or more). New fields file sequence
number and file section number are added to the visible record header. The visible
record now also has a trailing length. A new structure, FIXREC, is added to
indicate fixed-length visible records.

Fix encryption mechanism to handie blind passthrough.
The logical record segment encryption mechanism is modified to allow readers to
copy and re-segment data for which the encryption method is unknown.

Define a physical binding for files on random access disks.
A file on a random access disk is defined to be a storage unit if the file has a byte

stream structure consisting of a storage unit label followed by a sequence of visible
records.

Organization of APl Recommended Practice 66, Version 2

API Recommended Practice 66, Version 2 consists of Parts 1 through 9, plus Appendix
l A. These parts are briefly described below:

PART 1I: MODEL AND METHODOLOGY.

This part describes the data mode! upen which the format is based and the

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

PART 2:

PART 3:

PART 4:

PART 5:

PART 6:

PART 7:

PART 8.

PART 9:

API RPxbb 9 HE 0732290 0556760 359 1B

methodology for specifying schemas—namely, object types, attributes, and
the rules about them.

LOGICAL FORMAT.

This part describes the logical organization and representation of data,
including the definitions and uses of storage sets, logical files, visible
records, logical records, sets, objects, attributes, and values. It also
describes naming and referencing rules as well as bindings between
logical records and visible records and includes specifications of all
representation codes used in the format.

PHYSICAL BINDINGS.

This part describes how storage unit labels and visible records are
recorded on various common medium types, including 9-track magnetic
tape and random access disk files. It also describes the use of filemarks
and partitions where applicable.

THE API-SI UNIT MODEL.,

This part describes a unit model based on le Sysiéme International
d’Unités (8T} from which a wide variety of units can be expressed. The
unit model supports a genecral method for computing unit conversion
coefficients for dimensionally-related units.

THE API-SI UNIT SYMBOLS.
This part lists and defines the unit symbols recognized under the unit
model described in Part 4.

BASIC SCHEMA.

This part specifies the object types administered by the API Subcommittee
on Recommended Format for Digital Well Data using organization code 0
(zero). This schema includes certain basic object types such as FILE-
HEADER and ORIGIN, which are required by all implementations, as
well as other object types such as FRAME and CHANNEL, which are
standard mechanisms for describing the storage of dynamic (or bulk) data.

BASIC SCHEMA DICTIONARY.
This part lists and describes reference values for attributes belonging to the
basic schema.

DLIS SCHEMA.

This part specifies the Digital Log Interchange Standard (DLIS) schema
object types administered by the API Subcommittee On Recommended
Format For Digital Well Data using organization code 66. This schema
includes object types particularly oriented toward recording well log data.

DLIS SCHEMA DICTIONARY.,
This part lists and describes reference values for attributes belonging to the
DLIS schema.

APPENDIX A: ORGANIZATION CODES.

This appendix lists currently-assigned organization codes.

This standard shall become effective on the date printed on the cover, but may be used
voluntarily from the date of distribution.

vi

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

API RPxbb A9b EE 0732290 055L7kL1 295 HH

. CONTENTS

PART 1: MODEL AND METHODOLOGY

Introduction
BLOPE 1t e bbb e bt et ee e nen et re e eeeeeererrsans 1-1

0

1

2

3 CONOEPLS ..ot s e st re e s eeees e et vertsasar b snenan 1-3

4 AUBIENCE oot e e st sas oAb s 1-3

5 Schema Cale ONIES ..ot ee e sare s assesess st sarra s sesesessesenesemmsananensrrons 1-3

6 Schema Administration _...........ooviieeninnrirennnvenreersrsssisesesesssseseressee 184

T Data Model oot st e snsssesesmnnenenns 1<

8 Schema SPeCifiCation ... et er e 1-5
8.1 PrelHminary Part ... e sesracssnessseemesee s 1-5
8.2 NOmmMative PArtccccovvrcermre vt sassssssesessssvessssssesesasssneeen . 1-3
8.3 Supplementary Partc.oooviieerrmimenninec et s 1-6
8.4 Object Type SpecifiCalion ...ccccueciiieeieescenrsescs ittt et eseanaan 1-6
8.5 Altribute SpecifiCAtIONovovivieieiriimiece et sstt st e ee et s e s senes 1-6
Notation: How 10 Refer to an AHBULEc.c.ocooovviniieciciere vt sesenseerens 1-7

10 Dictionary SPECIfiCAlION ..ottt st s e e 1-7
10,1 Preliminary Part ... e eeriieenne. 127
10.2 NOrmMative PArt ... ssrssssss e seeeecesnsssnsesesesessess 127
10.3 Supplementary Partccccciececiirnnnncirnininaecetereeeeeesssssssessseenereee 18

Introduction
SOOPE ettt e s s e e e e s e e et neeee
RETEIENCEScviiiii et ettt sa s rane e s seere s e
Definitions ..
Concepts ..
Representanon Codes
Visible Record ..
6.1 Overwew
6.2 Visible Record Header
6.3 Visible RecoOrd BOAY ...c.oecereeveinvecreisinieiie et resasee e e sensesnasasasesans
64 Visible Record Trailercoiivroreivinirinreroeees e srses e sesesasenevasarens
7 Logical Record ..
7.1 Overvnew
7.2 Logical Record Segment Header wrrrrsrersr s esansssts st sessae s sarerarernes 2= 10)
7.3 Logical Record Segment Encryptlon Packct srrerrsr et s e srenens. 2011
74 Logical Record Segment Body .. T UTOUOOTPOTOR) 1/
7.5 Logical Record Segment Trailer e b r s sers s revracnsnessanernene 2m | 2
7.6 Checksum Algorithm .. U OTRPPOUOTRTSUTOTRR. 0 K |
7.7 Logical Record Body .. e b e e e ernneesnseerens 2 |3
7.8 Logical Record Encryptlon Rules U RUT U RURUBUTRIIPRORPORPRS . [- |
8 Exphcltly-Formatted Loglcal Record (EFLR) OOV U VOU YRR P
8.1 OVEIVIEW it tns e e e srreresa s arasrasonsesnsaennnnns 214
82 Component OO PO URRUURTUTT S b
8.3 SelS st eeere oo senennens 3= 16
84 TemPlALESoveveiriiieieenceniee et ee e eeemsrsss e sesasns e nen e ereenenones. 218

. 8.5 OBJECLS oo scrns st issn sttt ereresaserensnenes. 2218
8.6 ALTIDUIES ..evviiieiiniritiisie ettt e eeeeees e s e srn s sresenenene e e e e ennesnneesenes =20

. PART 2: LOGICAL FORMAT

N bW -0

vii

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

API RPxbbt & HB 0732290 0556762 121 IR

Page
PART 2: LOGICAL FORMAT (CONTINUED)
9 Indirectly-Formatted Logical Record (IFLR)........c..ooicviiiiireiioreeeerererararasnesanes 2-22
D1 OVEIVIEW ooeeerrrrrcnrarererrensrsrssereesraraserereseorssesssant smasssensssnsrasssesererassorsarenes 2-22
9.2 Data Descriptor Reference (DDR) ...vvovvvvvevvirersreesreossississessssssssssesssessses 2-22
9.3 IFLR MOQIfier ...t ssssesi s snsnees s ns s se s e s s s e senns s 2-23
10 Logical File ...ttt e esn s s sasarssssasm s es s bas 2-23
101 OVEIVIEW ot st nsns s s ssser e ra s e rae s rne e sns e sas sene s 2-23
10.2 Logical File Orgamizationccocemoicrceencseneiesenesseseesesenrensrsssrevaraens 2-24
11 Representation Code DESCTIPUONS ...cvvcviirie e reccicitee et sevenesere e e e e vnsesanens 2-24
T INEPOUCHION coriivimiine it irictsmesrmas s et n e rs s s s et e e r s b et e smenes 2-24
11.2 Representation Code SUMMATYvvvvrverrseririrrmresrmmsimmmosssssesesssssseses 224
11.3 Descriptions of Simple Representation Codesoovvvrnrarminererersenimsssensasnes 2-26
11.4 Descriptions of Compound Representation Codesocceorvnnninivoninernns 2-36
PART 3: PHYSICAL BINDINGS
O INEOAUCHON ...covieiiiiiniins st eneres e r e serassnsbesesss s et s s ssesbassseeesnnns 3-1
T SCOPE ittt st e e et st srs e e e e nar et amna s annensennen 3-1
2 DEfIIIONS oottt e s esaesneass etssensane et s rrs e ennensbrrs e snen et sareen 3-1
3 COMNCEPES evirrieieririeis sttt ete e e se e s sesnesanases s b s ssba st sm e rmrarmnarn e rbantesbt s st ennssasenn 3-2
4 Storage Unit Terminology and Requirementscccovvneeermeecorevrcininserevesesennas 33
4.1 Access Methods ... st er et e 3.3
A2 COMENM ceovieiitciriere it eressss st sn e et ssas e s s et aass st aaber s esbes b emresennnas 34
4.3 End of Storage Unit INdiCALOrcccccorirrrrrrrninsiinsnimnsssessressssseesasasasssmees 34
5 Storage Set Terminology and Requirementscoccoovivevniiicecnneeennsvensesssessveennas 34
6 Storage Unit Label CONMERIS ...t rrerrvveereneneeninesisesssrasessesssessses 35
6.1 Storage Unit Structure OPLIONScceveceveieiiieniicceee e vrrrrvrescasssnraessesnens 36
7 Binding to Standard Magnetic Tapescccieererereesecimnscressssessesssssssrersssresesses 3-6
7.1 Medium CharacleristiCscoovvvrrerrneenireninecnscinsessasessesassssesesarasssssssnsnens 3-6
7.2 Binding Requirementscooriireencorervmssersucssrressesssesssssssssarsssres 3-7
8 Binding to Random Access Files ...t renenes 3-7
B.1 Medium CharaCleriSliCscoeoicecerrerenicrisnsariessiesierenrsssscernessesrsesssessesssons 3.7
8.2 Binding REQUIFEMENLSoccoomereiiieiiriciiieni st rsstec e s et se s cr e rerevares 37
9 Binding to Peer-To-Peer Communication SIr8amsc.ccvvevvivmnsrsiisnississnianis 3-7
9.1 Mediem CRAACIETISHCS ...covivereiiiereeriniesseecereerrevrerrrrnese st s ssssasssseanssanssses 3-7
PART 4: THE API-SI UNIT MODEL
O IMIodUCHON oo rrrsresres e es s st ranssas e et s s s s sesssem st sara st rabesnbessan 4-1
I BCOPE ottt s nms s s e s s e e r e et e se e r A b e b e b et s tras 4-1
2 REFEINCES ..ottt ittt et as e s s s s sm e sesm s s se it e ss b se s st s ssssnessasaras 4-1
3 DEHANLONS oot s s e st sasss s s g s b v et e e st e e e e s arn s ranas 4-2
A CONCEPIS ..ovevrrrrirnrnesieinisrrs s rs s es e se s rrsas e b be sa bbb e pe s asabane bt e saba e sasesba st smtmrtans 4-2
S Unit EXpression Graimnar ... e seseessssessesssseassrasas 4-3
6 UM CONVETSION ..oooviniisiirmvcnnsriiasessrnesresareseaseeaessserasssnrarssssesssessssasasnsssas ns sanassrsres 4-4
6.1 Derived UNits ..o ecrirsesenes ettt semnasenn s seer s nansas 4-4
6.2 Unit Dimension and Unit Reductioncccocoiercvrirecrscareesescnsnessnes 4-4
6.3 Unit Conversion Using Reduced Standard Formsccivevicivvvrvcrensnnns 4-5

PART 5: THE API-SI UNIT SYMBOLS
¢ Introduction .
I SCOPE oottt 5-1
2 References

viil

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

API RPxbb 9k EM 0732290 0555763 068 M

Page
PART 5: THE API-SI UNIT SYMBOLS (conTiNUED)
3 Base Unit SYMDOIS .ottt e rrres e sns s snin 5-2
3.1 ST Base Unit SYMDOIS c.coevverirniiniinisiiniiensinnsssssiss et s eresseasssssnssse e 52
32 API-SI Supplementary Base Units-——Non-Currencyccccrceerervrervnennn 5-2
3.3 API-SI Currency Base Unit Symbolscccovirrerrerncnimnnnmiiren e insreens 5-2
4 Derived Unit SYmbOIS ...t versnrses e resse s e sna s s 5-5
PART 6: BASIC SCHEMA
O INEPOAUCLION ettt et ettt i n e st vres s eer e s b e se st s sb s ane 6-1
I SCOPE vt s s e s s et e e e e e R e rar et s 6-1
2 DERNIHONS ..ooervierccnrtiieeseinsses s e sersns s st sans s sras s sass besr b s ea b s be b atmt et e nerevnneresnnaresas 6-1
3 ALROTILY .oeocciieiicrererr i rere e essnerenrsssessarssnnrs e s e be e bntva e s basa b 1abssabs st sbmnraberamneranerns 6-4
B CONCEPLS ..o s e racserransmsse e reresmere e sere sesra e sese st san st bn s asbar et e snnes 6-4
5 UDILMOUEL ..ottt et et ee s e e cen s e et s ts e esarrassasa ses e sa s sbasrenanesanas 6-5
6 Dictionary-Controlled Ientifierscoooiinniciiciiiicc v e eerrnssssesssesas 6-5
7 Required vs Optional Use of ANTDULEScoceeniiiiiiireie e vererass s e renersrereenes 6-5
8 Frequently-Used AITIDULEScovvvrvroinrerrinrrenirisvsesete i irersnssnse s ns ssssasssassscsaninn 6-5
8.1 Interpretation of a Dimensioned AITAYccccccoceeermrorsimveesmssmsninssnesssesases 6-6
9 Required Object TYPEScoiennnimioimimseasssismsissinssssseressssesssssssesers O 1
9.1 File—l-leader ... 6-7
10 Opnonal Object Types . 6-10
TOUL AXES (oot crr et s s se s sa e e sae et e st 4 sa b s e hber e rmsnenenrsreraean 6-10
10.2 Chanmel ..o sttt e sr s e sses st et e cmse e ereres 6-11
. 103 COMMENL ..ot cvernrsrresrrsrrrsrs e rerareesasesesesesens saes 1aesaversnarssasen 6-13
104 COMPUIAHON ...ttt rrcsnesrre e rrneseeses st resesesesse raesanssanasenases 6-13
TO.5 FrAme ..ot crmbcntre s eer s v s r s rerearesssereresnsastsanesanese s ssanssasssas 6-14
LOB GIOUP oot certens et st e st st ba e s et te see e ees seemsasarerarssassaseseonsseanssnessn 6-16
10.7 NO-FOIMAL ..o errsr e sses s s besasssm s e sr b e e e emnnsnnere 6-16
108 Origin-TranSlationcccvevriirrrmvrerrrrerrsnee s ssrsseresesasesssasesssseemnens 6-17
TO9 Paraimelero.ocorcvrvrrerrrsrresresresnisnarereressrmssesasessrecassssasssesssasasnssss esssans 6-17
1010 PrOCESS ..vecveruceiiriiiisisiaisisiisisssssesnssmeasstesneseessesesnssressmrresssrsesssnssstonsesessseseenres. O 18
L0111 UPALE ..ot s sasa e s s e s e . 0-19
TOI2 ZI0NE .ottt st e e s s st et e am e nrran 6-20
10.13 Updatable Atributescccocoo v eresssesssasssesseees. 0220
PART 7: BASIC SCHEMA DICTIONARY
0 Introduction .. - s 7-1
T BCOPE oottt e s e b e s e e bR s s e s e bn e e cnan 7-1
2 Authority .. 7-1
3 Concepts .. ; PP VOO PRURORRPUUTRY £ |
4 Channel Reference Values .. 7-2
4.1 DHFECHION ..o crierecrcrcar e s ressersrasresessresstrsreraressnerasasesasrassensnsasnenrarasan 7-2
4.2 FIaBS it e e s e e s e e e b nane st 7-2
5 Frame Reference VAlUEs ...t eccve e ressa e e n e rens 7-2
5.1 Flags oot resst s s s s e s e et e 7-2
6 Process Reference VAIUES ... rers e e e s tsnr s sn st 7-3
B.1 SHAIUS e et st e e st s e s et e g enren 7-3

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

API RPxkEb 96 M 0732290 055b7b4 TTy HH

Page
PART 8: DLIS SCHEMA
O INIOAUCHION <ot e et re s vra e s ra e e s re s sa e s sr paresaba s be s e s e ssamsas s omesesemm on 8-1
I SCOPE v, eererebrreresssrerrtse s eer s e b e Rt s e s e nsr e e s 8-1
2 DEfINILIONS ..eoveiiririrciairiect et reererrs st rrerrrerarara e s s resEs s e ab s b e bt st bnssssenraraentstmnanon 8-1
3 AULROTILY oottt ettt et e crrr s e e et a s s s s ner s erme s enraren 8-4
G CONCEPLIS rerereeerararrrreisressararserssesasessssesasasssasissstass itesmmeoneererossasesnsessssesnsrassessanessases 84
S URIEMOGEL ot er et meem et r et e r s e s nesrnessasanaasantonns 8-5
6 Dictionary-Controlled IEntifiers ..o e srreseseressssesesasase sesans 8-5
7 Required vs Optional Use of ATHbUIES ...c.ooveeiceeiceeeee e rsessrssr e 8-5
8 Frequently-Used AUTIDULES ...cocvcrvvvrerririirrercsecvsnsiesenresseessrsssssenssessssrsesenssaassanens 8-5
9 DLIS ODDJECE TYPES .erereverreereriararnsersesieiriesssaesressisesarasarassssesssnsarasssasessssssnssasesrenerase 8-5
9.1 CaliDIALON L. oo errssra s e sarees e resmts s sreesree s e ee s e savasesasens 8-5
92 Calibration-CoeffiCient _...........ccvrririirrrrrrisrirnrersniseerins s rsesssserserssasssnse 8-7
93 Calibration-Measurementcccoomeinininminremimmss misienressssmessarnsasesees 8-7
9.4 DLIS-COMEXE .oeirerereriinrireereseesrmrresersssesrarnsensssansmessssssbesssasesasssapasssnsosssssranes 8-9
9.5 EQUIPIMENL oottt sne s se s e se s emesseesessrssssassresansansonneshsoses 8-9
0.6 MESSAZE ..o e e ssensnesenanessnsrensensns. D=]]
D7 Path et et e e e b e naas sasanaanres 8-11
D8 BPlICE o e s e e b pab peearaseres 8-13
0.9 TOOL coercrrccrrrrrrreirrrarererssres e rasarassrassesasassrasstess sesarararesatesseesnessnssssessenssanres 8-14
9.10 Wellbore-Path-Datumcccconiriiirrirnnrnrernerrnsseesinersnsesraesincnsssnsnsnes §=14
911 Updatable AUTIDULESooviiiiririnerencrnrreeeecsene st e mesesrmsssnnens 8-15
PART 9: DLIS DICTIONARY
O INEPOQUCTION ..oceoieecieceiieerecer s scnte e senre s s e s sn e sess see s s s stas e ab eba bt e bt rararasaonnasasrnssan 9-1
T SCOPE ottt e e et s e e e R s ea e et er b s e A besA R e A rer b renaran 9-1
2 AUMOFILY evvriceiccrercerecnecrnnrervsmrsres e e e esaesanerees H TP 9-1
3 COMCEPIS iiisristiisnmsrimiessiiisssissrasssissnarasarssnesirarasarsssessessrerasasessssesnsssrsasas anssarsssnsnes 21
4 Calibration-Measurement Reference Valuesccoovvcrvvcrnnne e, 92
4.1 PHASE .oeooieeciiic e e sse st sens e a0 19 0e e s b et i rasarasasesnssaasbasesannrmnrnrns 9-2
5 O/Channel Reference VAIUEScooioiiciecirmrnrsrrenes s e sseeneresstessasssnvssnons rara vers 9-2
5.1 KINA coeeecrrcrtrresc e e e e ert s sar s e e st s ae s s ae st e s ren g seas e s be b e pn 9-2
5.2 PrOPEITIES ..ovnrvnniininnrinniniiieitiasssississssieseeesinesisasasesmasssnsasesnsarasss saremsssnaresn 9-2
6 O/Computation Reference Values ... niisimessinesrarsessene 9-4
6.1 PrOPETHES oot rere et e e em e aan s st a0 404 b s b e ba s s e bas e san 94
7 Equipment Reference VAIIESccocovvirriievcricniisnnnre st smscrnesenssesesanenssnssernnen 94
7.1 LOCAION .oiiniriieirariesinerararminesiraraesnesssasasassseessensessssssesmsesassseessassssrsesnsasssseneses 9-4
Ti2 THPE it isns e iresana e sase s ba b s e b ra e sns pare s raensns pabesaaeenta st et esnrnnn 9-4
8 Message Reference Values ... e raserasaas 9-5
Bl TP oot et ee e e e eA s e rese e e s e e eR e e e pan e et 9.5
9 O/Parameter Reference VAIUES ...ttt scnseterncernssressnsres 9-5
D1 PrOPEIIES covvvvisrrceimsriisrsisemsnis tsensssis sesessssint sestsaesbnssenssesasasnsssnsnsransassasasnsns 9-5
10 0/Zone Reference VAlUESc.cocviveerericinscornnnncnsenssrssonssnsssnissenessasssnssnssnesesasesas 9-5
L0 T 0 Tu o 5T { U O 9-5
APPENDIX A: ORGANIZATION CODES
LI 4T e T PPN A-1
b 0P ittt e e e m e st st ramta s st e st et st et e ae e e e e e A-1
2 Assignment of Organization Codes ..o s resssesssens A-1

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

API RPxbb 9b EE 0732290 0S55L7LS 930 HE

Page

Figures

2-1—Conceptual View of a Logical Format {Bound to a Physica] Format) 2-§
2-2—Visible Record Structure .. v rermsrsse et erens 27T
2-3—Logical Record Segmentauon (thout Encryptmn) rensssneessiesenenens 2-10
2-4—1 ogical Record Segmentation (With Encrypnon) cemeerrrsrrrcrrnnssesesnens. 2210
2—5—Appllcal|on -Level View of a Set (Type FOO) .. RO PRI I |

2-6—Component-Level View of a Set . B OO UPVOTUTPUTURPTORU 0 F.
2-T—Component Structure .. e bbbt e e ee oo e trerarstesaennnnsnesnns 2= 1D
2—8—Examp]cs of Atiribute Components coreresrnanennnn 2721

2-9—Structure of an IFLR Body and Relanon to its Data Descrlptor v 222
6-1—Examples of AZETBRALEScvciuevveieeeiiinciscvisissis i e eersereresassenessesenss | =0
6-2—A Frame Block .. - SO ROPOPOPPPPR ;o3 I
6-3—An Unbounded Gnd of Frame Type lndexes rerrissessre s neeesnessnnnesrnnss O=15
8-1—Spatial Coordinate Systermn for a Wellbore Path ... 8-4
8-2—Illustration of Simple Two-point Linear Calibration
B-3—Tool String CONfIEUIAONcveeeeeieeeceiersiecceeeen e et sn s snemsesenes. 8212

Tables

2-1—Visible Record Header Fields ... rereernens 28
2-2—Logical Record Segment Header Fieldsc.ccoccoveevvviinarninninionnesnnnnnnnes. 2-11
2-3—Logical Record Segment Header Attributescooovvvvirvveicnnisvcnene., 2-11
2-4—Logical Record Segment Encryption Packet Fieldsoovviviiiieseiinns 2212

2-3—Logical Record Segment Trailer Fields ..., 2-13
2-6—Component Structure

2-7—Component Role ... et sb s s
2-8—Normal, Redundant, and Replacement Set Componentsoeeerernveenas 2-18
2-9—O0bject COMPONENE ...rivrieirrr ittt sereesssermsrss e e e sermessetsanesesasntssesssrans 2-19
2-10—Adltribute COMPONERLScoriiriere e ersreesestem e e rereeessesressesesesssesstses 2-20
2-1 1—IFLR Modifier Optionsc.ccccvoivnrrornnreeie e iesesnsvsssesistotee seoeseseeeseseenes 2-23
2-12—Representation Code Summary .. e b e reenenes Bm2D
2-13—Compound Representation Code Dcscnptlons SRV 2 |
3-I—Storage Unit Label Fieldsccevveieciiinicirneiieeere oo ersrssssssssserssesnsns 3-5

3-2—Storage Unit Structure OPLIONScovevevnnmesnnnncssnnsinesesesnsesssereseeeeesenees | 3-0
5-1—SI Base Unit Symbols .. U U UPURTUUUUPPUT. .

5-2—AFPI-SI Base Unit Symbo]s—Non-Currency SOOIV £
5-3—API-SI Currency Base Unit Symbols ... 522

5-4—API-SI Derived Unit SYmbOIS ..ot een 5-5
6-1—Frequently-Used AUNDBULES ..ottt sn s esssssssensssss oo s 6-5
6-2—FILE-HEADER AUFBULEScocviiieiiietiieieeceeeeeeevescvvssersssesasesssesssasesasasenne 6-7
6-3—ORIGIN ALIMDULES ..evivieereiiniii e scicc e ssesessesesstie e seeeesras sesasere saseassssenssesssn 6-9
B-d—AXIS AUNDULES oo veecres e esrassseee s astae s beesrsessnsensesssnreraresareessnes 6-10
6-5—CHANNEL AUFIDUIESccoiveeiieeeeceieicimsecscseressesessstissessssaeesseessresssasasssassssressns 6-11
6-0—COMMENT ALTDIIES _..ecvvieiieeereiieicirerenesessesessressssassssssssesssos sesnneressansessse 6-13
6-T—COMPUTATTION AEDULESo.oootiivierieiei e eeeeeeeeeemeeeseresensssseassesesnssssssesasssnns 6-13
6-8—FRAME Attributes 6-16
6-9—GROUP ALIDULES oo iirerresiuirerirsnreesssessress e s rereresesmrmmaseserssssnsarsere 6-16
6-10—NO-FORMAT AUTIDUIEScevivieiirerrrerieierimisinersssencerssstssssssss soesessrsnnsssssassrane 6-17
6-11 —ORIGIN-TRANSLATION AGTFIDULEScoevnveiveeverereveesesrenesesssesessssseserssessnns 6-17
6-12-—PARAMETER AUDULES ...ooeoooeeeeiiiieveeeeeeeeeeearesesssersesseresssnnnessenesessrns 6-18
6-13—PROCESS ALIDUIES ...ccocveeceieiereriiiciee s inesesssesesrsesssssesssaasessssstomsasesassnsessases 6-18
O-14—TIPDATE AITDULES ..voneeeeeieeeeeceeeeeverrressessneesasasssssaesasesersrassssssensases saseassrens 6-19

xi

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

API RPxbLb 9k HB 0732290 055b%7kLbL 477 IR

Page

Tables (Continued)
B-15—ZONE ALMDULESoocreerreerreerriiisrerererniteeareseisontsinsceeseeeeeeeeeer e sraesrerans 6-20
6-16—Updatable ALHbULESc.cciericcerrrer e ssrrs st et ran 6-20
T-1—CHANNEL:DIRECTION Reference Valuesooovvvvvevvvsvisssesieenanennres, 122
7-2—CHANNEL :FLAGS Reference VAIUESocveveeiieiiieeeeeeeesvent s sena e 72

7-3—FRAME:FLAGS Reference Valuescoeeiiieiininsicceseeeeeeeeeeessssseserasns 1-2
7-4—PROCESS:STATUS Reference Valuesccccvvivieirseressininiieccesevrnsseserreraress -3

B8-1—CALIBRATION AUIDULEScooerervrrerreerrrsinisiinssiseseessessessaeeeeeseeeeeeesressssvees 8-6
8-2—CALIBRATION-COEFICIENT AUTIDUIEScovverererereieieisieiinsiiesteeeeenerersees 8-7
8-3—CALIBRATION-MEASUREMENT ADUIES ...ocvcvvicveirineisererssssssseeeeenenns 8-7
8-4—DLIS-CONTEXT AUIDBULES ..ocvireieemeeeiereivrcerersinessssesenssssecssmsssssssesemermnens 8-9
8-5—EQUIPMENT AUIDULEScoovvieecieeriieiiiiiiieeeeceeeeres v reseesssseserssssess sasesssmssns 8-10
B-6—MESSAGE AUNDULIES ..o cssnisisisesssseerssmrsesssssssesenessseseneses 3= 11
B-T—PATH AIIIDUIES ..coeeeveeieeer vttt sttt st s eme e eererasrresenesesens saneseseens 8-12
B-B8—SPLICE ALFDULEScovevereveerrereineesvscsrensrsssssissssssssssiis siieeeseeermnessseessenssesecas 8-13
B-O—TOOE AUFIDBULES ...oooniie ittt eeeeee v s e e ssseessseressesanssssnsssssssntssemmmenenan 8-14
8-10—WELLBORE-PATH-DATUM AUIIDULESooororeerrrrerereerririereieisenesssesesseeensn 8-15
8-11—Updatable AriDUIESc.cvvrmeiiiiiii i reccrarresrernrerenn e se e sssasan s 8-15
9-1-—-CALIBRATION-MEASUREMENT:PHASE Reference Valueso......... 9.2
9-2—0/CHANNEL:KIND Reference ValUesccocevveeiiiiiiriieeeeeeeeeerssrseserarens 9-2

9-3—0/CHANNEL:PROPERTIES Reference Valuesccocevcevinecrrvrnmnnasnnes. 32
9-4—EQUIPMENT:LOCATION Reference Valuesccoccecevenevencnievennnnsrienrnes . 9-4

9-5—EQUIPMENT:TYPE Reference Valuesoovvrmvieinniisnnscnsiseeeeeernns 9-4

9-6—MESSAGE:TYPE Reference VAIUES ..ooeeeivirivrereeerirerenssresesssssesssssesssnssssssses 9-3

9-T—O/ZONE:DOMAIN RefereniCe VAlUES ...ooioiiiiree oo vceeeerssssesesassessmsees 9-5

A-1—Organization Codesccvvnricrniniineienicieeees rretert e e aeasbasasens A-2
xii

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

API RPxbb 95 EE 0732290 0DS55bL7b7 703 EH

Recommended Practices for
Exploration and Production Data
Digital Interchange

Part 1: Model and Methodology

Exploration and Production Department

. AP! RECOMMENDED PRACTICE 66, V2
SECOND EDITION, JUNE 1996

American
. I) Petroleum

Institute

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

API RPxbb A9b EE 0732290 D5S5L7LS8 L4YT EE

. CONTENTS

0 - O AW R
]
0
5
2
>
S
&
8
&
Tl
(7]

SCHEMA SPECIFICATION ..ottt sernsneses e snens

8.1 Preliminary Part
8.2 Normative Part
8.3 Supplementary Part
8.4 Object Type Specification
85 Atribute Specification

. 10 DICTIONARY SPECIFICATION

10.2 Normative Part

..
...
...
...
...
...

..

9 NOTATION: HOW TO REFER TO AN ATTRIBUTEccoooerceerverrernsssenenes
10T Preliminary Parl ...t cee e e e eressn e sreesesasssssasaseon

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

API RPxbb 9- EM 0732290 055b7L9 586 W

Recommended Practice for Exploration and Production
Data Digital Interchange
Part 1: Model and Methodology

0 Introduction

0.1 This standard contains introductory, normative, and annotative information.
Introductory information comprises everything that precedes Section 1, Scope. The
introductory clauses describe how the publication is organized and provide commeniary
on the history and purpose of this standard. Normative information includes the actual
requirements that must be satisfied by any data conforming to the standard. Annotative
information is provided as rationale for and illustrations about the normative information
and does not constitute part of the standard. The standard is completely stated even if all
introductory and annotative information are removed. Annotative information may refer to
terms introduced in later paragraphs or parts in order lo tie together concepts, i.e., from

lime to time its value may increase after the reader has made a complete pass over the
standard.

0.2 Different styles are used to distinguish between normative and annotative
information.

0.3 All normative information is written using this same font, and is contained in either
numbered paragraphs or numbered tables. Normative text is aligned with the left margin

. of the page.

0.4 All figures are annotative, and all annotative text is written in unnumbered
paragraphs in Helvetica italic font, indented, as shown here:

This is a paragraph of annotative text. lts purpose is to include informal
commentary on the normative information in immediately preceding or
following paragraphs and may include references to or usage of normative
information in other parts of the standard.

1 Scope

1.1 This part specifics a methodology for managing (generating and maintaining) a
schema specification for data to be recorded under the API Recommended Practice 60,
Version 2 format.

1.2 This document is intended to:

a. Facilitate the development of exchange standards based on the API Recommended
Practice 66, Version 2 formai.

b. Facilitate the development of schema-neutral software products and services, by

promoting uniformity between API Recommended Practice 66, Version 2-based exchange
standards.

¢. Promote compatibility between editions of a schema.
2 Definitions
2.1 attribute: A named item of information or data periaining to an object type.

. 2.2 attribute count: The number of elements in an attribute valoe.

1-1

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

API RPxbb 9 EE 0732290 055L770 2T4 HM

1-2 APl RECOMMENDED PRAGTICE 66, V2

2.3 attribute label: The name of an attribute.

2.4 attribute representation code: A code that identifies the recorded
representation of each element of an attribute value.

2.5 attribute units: An expression that represents the units of measurement of each
¢lement of an attribute value.

2.6 attribute value: The value of an attribute. It may be present or absent. When
present, it consists of zero or more elements, each having the same units and the same
representation.

2.7 characteristic: A subitem of a component that contains one piece of information
for a data item. Characteristics of an attribute component, for example, are its label, count,
units, representation code, and value.

2.8 data model: A description of a specification and representation paradigm for data.

29 dictionary: A database in which identifiers and reference values used under AP1
Recommended Practice 66, Version 2 are maintained and administered.

2.10 identifier: One of the three parts of an object name. It is a character string used to
distinguish the object from other objects of the same type. For some designated object
types, the identifier conveys meaning of the nature of the object, and the identifier and its

meaning are maintained in a dictionary. I

2.11 logical file: The main unit of data exchange. It consists of a sequence of one or
more logical records, beginning with a record containing a single FILE-HEADER object.

2.12 logical model: A conceptual organization of a domain of knowledge.

2.13 object: A recorded instance of an object type.

2.14 object type: A logical entity of a schema that has a unique type name and one or
more defined attributes. Instances of an object type are written in explicitly formatted
logical records.

2.15 organization code: A number assigned by API to an organization that identifies
the organization and represents schemas and dictionaries defined and administered by the

organization. See Appendix A, “Organization Codes.”

2.16 representation code: A unique number that identifies a standard encoding for a
value as a sequence of one or more contiguous byles.

2.17 schema: A formalized description of the enceding of information defined by a
logical model, typically in terms of a data model.

2.18 schema code: A numeric code found in Appendix A used to identify the
organization responsible for defining and administering a schema.

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

API RPxbb 95 B 0732290 0556771 134 WA

EXPLORATION AND PRODUCTION DATA DIGITAL INTERCHANGE, PART 1; MODEL AND METHODOLOGY

. 3 Concepts

3.1 A logical model is the conceptual organization of a domain of knowledge: What
classes of things are of interest, and what are their characteristics and the relationships
between them which are of interest? A logical model is a framework for common
understanding of the nature of classes of things, but is not sufficient for communication
about individual members of the classes.

3.2 An implementation model, also called a schema, is 2 formalized description of the
encoding of information defined by the logical model, typically in terms of a
representational model. How are general representational constructs used to encapsulate
information about the elements defined in the logical model? A schema must be
sufficiently dynamic to meet new requirements, and yet must be sufficiently stable that
change requiremenis are not unnecessarily imposed on the systems which use it.

3.3 A representational (or data) model is a description of the specification and
representation paradigm to be used. What are the fundamental representational constructs
and their organization? How is the schema specified? How is data organized, encoded,
stored, and decoded?

3.4 The purpose of a schema specification for an exchange format is to enable the
exchange of information in some domain of knowledge.

4 Audience

. 4.1 This document is intended for:

a. Original authors and maintainers of schema specifications.
b. Readers of schema specifications.

¢. Developers of schema-neutral APl Recommended Practice 66, Version 2 software
layers and systems.

4.2 Tt is assumed that the reader has a basic understanding of logical models, and has a
particular logical model in mind. No particular modeling formalism is assumed; indeed,
the schema specification may itself be the only formal expression of the logical model.

4.3 API Recommended Practice 66, Version 2 is a general-purpose data exchange
mechanism which is not bound to a specific logical model. The purpose for using a
standard methodology for schema specification is 1o enable the implementation of data
exchange using model-driven software layers.

5 Schema Categories
5.1 Schemas may be categorized as managed, derived, and local.

9.2 A managed schema exists from the definition of its initial edition, through
subsequent editions, until all data recorded under it are no longer of interest (i.e.,
indefinitely). During this life cycle each edition of a schema is expected 1o meet certain
requirements for compatibility or continuity with previous editions. As the logical model

and usage requirements change, new editions of the schema are developed, subject to
these constraints.

. 5.3 A derived schema is one which is systematically derived or inferred from a
formalized logical model according to a deterministic methodology. In this case a human-

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

API RPxbb 9t EE 0732290 0556772 070 &N

1-4 APl RECOMMENDED PRACTICE 66, V2

readable schema specification might not be produced. Furthermore, the schema edition
reflects the version of the derivation methodology and the versioning policy under which it
is governed. The logical model may be governed under a different versioning policy.
Organizations that define derivation methodologies should provide mechanisms to record
and identify the author, name, and edition of the logical model from which the schema is
derived.

5.4 A local schema is one that is neither managed nor derived but is used for local
exchange or storage of data using the data model.

8.5 This decument is normatively applicable to managed schemas only.

6 Schema Administration

6.1 An organization must have been issued an organization code to publish a managed
schema or a schema derivation methodology. Code 999 is reserved for local schema. An
organization code is assigned on request by the Exploration and Production Department,
American Petroleum Institute, which alse maintains the most current list of organization
codes. Iis address is listed at the end of the Foreword.

6.2 The holder of an organization code may publish (editions of) a schema or a schema
derivation methodology under that code. An organization that wishes 1o manage multiple
schemas may obtain multiple organization codes. No other constraints apply among
schemas, but certain constraints apply between editions of a managed schema. If a schema
element is defined under two editions, then it has the same meaning and use in both
editions. Elements may be dropped from one edition Lo the next and new elements may be
added, but elements may not be redefined.

6.3 Alternatively, an organization may manage multiple schemas by defining a
derivation methodology under an organization code for mapping an appropriate class of
logical models into derived schemas.

6.4 In general, it is expected that an organization that publishes a schema or a schema
derivation methodology will also publish the specific versioning policy governing
compatibility and constraints between editions. Derived schemas editions are determined
indirectly by reflecting the logical model edition along with the name and edition of the
derivation methodology applied to the logical model.

7 Data Model

7.1 API Recommended Practice 66, Version 2 schema specifications are defined in
terms of object types, attributes, and the rules about them. These data model elements are
described in detail in Part 2, “Logical Format”

7.2 The specification of an object type includes its name, its semantics, its attributes,
and whether its instances have controlled names. No relation shall be assumed between
object types in different schemas having the same type names.

7.3 The specification of an atiribute includes its label, its semantics, and any restrictions
on its count, representation code, units, or value. Unless explicitly stated, no relation shall
be assumed between attributes in different object types having the same labels.

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

API RPxLb 9L W 0732290 055k773 TO7 M

EXPLORATION AND PRODUCTION DATA DIGITAL INTERCHANGE, PART 1: MODEL AND METHODOLOGY

1-5

7.4 An instance of an object type is constrained by its object type specification. An
object may have all, some, or none of the attributes defined for it, and shall not have
attributes not defined for it or duplicates of the attributes defined for it.

7.5 An instance of an attribule is constrained by its specification in the object type of the
object in which it appears. An attribute has exactly one occurrence of each type of
characteristic: label, count, representation code, units, and value. The label identifies the
attribute in terms of its definition in the object type. The value is composed of zero or
more elements, or occurrences of the data representation identified by its representation
code. It has a single count, which is the number of elements in its value. It has a single
units value, which applies to each element of the value.

7.6 The logical file is the logical unit of data exchange, and is a collection of objects and
other data described by its objects. The object is the unit of data which may be uniquely
referenced within a logical file. An chject is a collection of the attributes defined for its
type, with assigned values. A logical file may contain objects from any number of
schemas, and objects may refer to objects in different schemas in the same logical file.

8 Schema Specification

8.1 Preliminary Part

8.1.1 The preliminary part of a schema specification may include the following:

a. Title page.

b. Table of contents.
¢. Foreword.

d. Introduction.

8.2 Normative Part

8.2.1 The normative part of a schema specification may include the following:

a. Context.
1. Title.
2. Scope.

3. Normative references.
b. Authority.
1. Sanctioning organization.
2. Document preparation, revision, and review committees.
3. Proprietary considerations.
4. Revision and versioning policies.
c. Edition.
1. Edition level.
2. Summary of this and recent editions.
3. Document status (draft or final),
d. Definitions.
1. Define terminology introduced.
2. Normative references to other defining documents.

e. Model
Definition, presentation, or description of the logical model, or reference to equivalent
documentation.

f. Schema.

I. Definition of object types and their atiributes.
2. Constraints on objects and attributes.

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

API RPxbLt 95 EB D7?32290 0556774 943 1R

1-6 AP! RECOMMENDED PRACTICE 66, V2

3. Relationships to corresponding elements of the logical model.
g. Dictionary.
Tables of reference values, to which attributes they apply, and their meanings.
h. Units.
l. Specification of unit model(s) and unit dictionary(ies) used in the schema (if not
API-SI units). ’
2. Identification of units model in atiribute restriction specifications.
i. Normative appendices.

8.3 Supplementary Part

8.3.1 The supplementary part of a schema specification may include the following:
a. Informative appendices.

b. Footnotes.

8.4 ObjectType Specification

8.4.1 An object type is specified by providing a unique lype identifier, dictionary
constraints on the identifier subfield of the name, a set of attributes, and the intended use
of the object. An ohject type specification typically has the following parts:

a. Type name.
b. Contexl—a description of the semantics of the object type or reference to a logical
model.

¢. Attribute specifications.

8.5 Attribute Specification

8.5.1 The characteristics of an attribute are its label, count, representation code, units,
and value. The formal specification of an attribute includes its label, and may include
constraints on the remaining characteristics.

8.5.2 The formal specification of the set of autributes defined for an object type is
presented in a single table, followed immediately by a set of numbered notes. The columns
of the attribute specification table are:

a. Auribute Label: a valid IDENT value, unigue in the object type.
h. Restrictions: a set of restrictions on the count, representation code, units, or value
characteristics of an attribute. Restriction specifications are of the form ‘ql=rl, q2=12, ...
qn=rn’, where ‘qn’ is the characteristic identifier and ‘rn’ is a restriction specification. The
characteristic identifier is lower case. When no restrictions apply, the identifier is omitted.
Restriction specifications are stated in the order ‘c=..., r=...,, u=..., v=..",
l. A count restriction is specified as ‘c={[minl:max1], [min2:max2],
...[minn:maxn]}’, where mink and maxk represent bounds, or ‘7’ if the interval lacks
an upper or lower bound. If a single boundary set is specified, the curly braces (*{°,
*1%) are omitted. If the minimum and the maximum are equal for any boundary range,
the square brackets (‘[*, ‘]’), colon (*:’), and second range limit are omitted.
2. The representation code restriction is specified as ‘r=XXX [YYY | ZZZ’, where
XXX, YYY, and ZZZ are alternative representation codes. If a single representation
code is specified, the vertical bar ‘I' is omitted. For each representation code, an
alternative representation in the same representation code class may be used, but the
value shall be representable in one of the specified representation codes.
3. The units restriction is specified as ‘u=um:uexp’, where ‘um’ identifies the units
model and its dictionary, and ‘uexp’ is a units expression in that units model. If the

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

API RPxbb 9L WM 0732290 055L775 88T HR

EXPLORATION AND PRODUCTION DaTA DIGITAL INTERCHANGE, PART 1: MODEL ANC METHODOLOGY

. ‘um:’ prefix is omitted, then a default unit model shall apply if declared in the general
context part of the schema specification. The specification ‘u=" indicates the attribute
value is unitless. When the unit model is API-SI, then restriction to a unit represents a
typical or preferred use, although ancther unit having the same canonical form may be
used. A unit having a different canonical form shall not be used.
4. The value testriction is specified as ‘v=ref”, where ‘ref’ may refer to the note or to
a table of reference values for the attribute. Reference values are dictionary-controlled
values belonging to an enumerated set. A schema may declare a value to consist of
reference values and defer actual definition of the reference values to other schemas

that may use the attribule’s object type. A schema may provide an actual table of
reference values or a normative reference 1o them.

<. Notes: Numbered references te notes that immediately follow the table. Notes are

free-format descriptions of semantics and other rules about the attribute and its relation to
other attributes.

9 Notation: How to Refer to an Attribute
9.1 The notation TYPE:LABEL is used 1o refer to an attribute in a scherma, where TYPE
is the object type and LABEL is the attribute label. TYPE may be omitted if understood

from context. If the schema is not clear from the context of the referral, then the additional
notation n/TYPE:ATTRIBUTE is used, where ‘n’ is the schema code of the object type.

10 Dictionary Specification

10.1 Preliminary Part

. 10.1.1 The preliminary part of the dictionary may include the following:
a. Title page.
b. Table of contents.
c. Foreword.
d. Introduction.

10.2 Normative Part

10.2.1 The normative part of the dictionary may include the following:

a. Context.
1. Title,
2. Scope.

3. Normative references.

b. Schema: a reference to the schema (schema code, schema name, schema edition) and
dictionary specification within the schema for which the dictionary is applicable.
¢. Authority.

1. Sanctioning organization.
2. Document preparation/revision/review committees,
3. Proprietary considerations.
4. Revision and versioning policies.
d. Edition.
I. Edition level.
2. Summary of this and recent editions.
3. Document status (draft or final).

e. Definitions,
1. Terminology.

2. Normative references to other defining documents.

—

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

API RP*bb 9L BB 0732290 055L77h 71L EE

1.8 APl RECOMMENDED PRACTICE 66, V2

f. Description of the reference value tables.
2. Reference value tables.
1. Title which identifies the attribute restricted to the reference values,
2. Reference value column.
3. Description column.
4. Other columns as required by the schema.

10.3 Supplementary Part

10.3.1 The supplementary part of the dictionary may include the following:

a. Informative appendices.
b. Footnotes.

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handl i ng Services, 2000

API RPxbb 9 HM 0732290 0556777 L52 W

Recommended Practices for
Exploration and Production Data
Digital Interchange

Part 2: Logical Format

Exploration and Production Department

. APl RECOMMENDED PRACTICE 66, V2
SECOND EDITION, JUNE 1996

American
. L) Petroleum

Institute

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

API RPxbb 96 EE 0?32290 D055kL7?78 599 mE

CONTENTS

REPRESENTATION CODESccooiiiirinriece e nessssnrnresnenes 220

6.1 OVEIVIEW 1ot vv e smas s resr e snbee s sramissracsssreoenens | 2= T
6.2 Visible Record Hcadcr DS UURUR S
63 Visible Record Body ..ot eine e 228
6.4 Visible Record Traileroveveeimiorereniiinininicines e eccisss e esenen. 28

7 LOGICAL RECORD

7.1 Overview ..., RO URRURURT . o .

7.2 Logical Record Segment Header .. 2-10

7.3 Logical Record Segment Encryption Packelccocoeoivecneceiiiniiiiiren, 2-11

7.4 Logical Record Segment Body ..o, 2412

7.5 Logical Record Segment Trailerccocciininninnrncecceneninen. 2-12

. 7.6 Checksum Algorithm .. et e e s s n e e s nessraresanernensnsnansnerans 2= B 3
7.7 Logical Record Body .. rerrr e s a st s s s s saneeaeasamscemaeans 2013

7.8 Logical Record Encryptmn Ruies OO P PO RDNSPSTUREI. S I |

8 EXPLICITLY-FORMATTED LOGICAL RECORD (EFLR)ccccocvevevrevnenn. 2-14
8.1 OVEIVIEW Lot itieitiee e reeee e s e teessre s e et e s srneraseearasrnssabeserssasans stanesnss 2 18
B2 COMPOMENE .oivivvenitiiirirerteie et ee e et eetmeeeneeessesenseanrrsssassnesrsasesetesntssn 2-15
8.3 I £ USROS P U UTUUPUURURIPRTD. S I+
B4 Templates ..o reenr e v re e e ennieenae e 2718
B.5 OBJECIS i e s s e rn e e seseerenennes. 2 18
8.6 Attributes

9 INDIRECTLY-FORMATTED LOGICAL RECORD (IFLR)}.....ccooviiieerevecnrer s 2-22
9.1 Overview .. et ettt i reteeenrantntnn e nsaeannrnnnmiinanns DB

Q2 Data Descnplor Refcrence (DDR)
9.3 TFLR MOGIfIET c.evovviriercreicieinrernneitrernrevessstrsrnrssnsnsssrsrsnsesssessesersnssressssenssees 2-23

10 LOGICAL FILE .. OO OO POROROPPUOTOUPPPI .. |
10.1 Overview U OO GO £
10.2 Logical Flle Orgamza[lon et e et et et et eee e rersreesnsnenassrarares DD

11 REPRESENTATION CODE DESCRIPTIONSoccoiiniinvniniiiniiicneencnnes. 2224
11.1 Introduction OO UU O PO PTOUSOTOTOUUORIPUP. 2.
11.2 Representation Code Summary PR .

l 11.3 Descriptions of Simple Representauon Codes ..., 2-20

W AW N = O

11.4 Descriptions of Compound Representation Codes ...oovvvvvvcriivcrrinecrannn,. 2-36

iil

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

API RPxbb 9L WE 0732290 055k779 u25 WM

Page
Figures

2-1—Conceptual View of a Logical Format (Bound to a Physical Format) 2-5
2-2—Visible Record Structure . .2
2-3—J1.ogical Record Segrnentatlon (Wlthout Encryptlon) 2-10
2-4—Logical Record Segmentation (With Encrypuon) .. 2-10
2-5—Application-Level View of a Set ('Iype FOO) .. OO ol 1. |
2-6—Component-Level View of a Set . OO Y
2-7—Component Structure ettt e arar e e rere e emne e et senenenareresanarare 210
2-8—Examples of Attribute Componcnls ermeeemreeeaeene 2221
2-9—Structure of an IFLR Body and Relation to lts Dala Descrlplor crerenane 2222

Tables

2-1—Visible Record Header Fieldscccomivviivrininnnrinonronronne. - 2-8
2-2—Logical Record Segment Header Fields ... 2-11
2-3—Logical Record Segment Header Attributes ... 2-11
2-4—Logical Record Segment Encryption Packet Fieldsccoovivvvviiccenecinnenn. 2-12
2-5—Logical Record Segment Trailer Fieldscivevervevnivninvrnnnrssnrereessssaesreenns 2-13
2-6—Component SITUCIUTE ..ovvvvuverrmisrsiearmrciisisiersimimsresisssisesssareresesnsnessssranssssiessen 2= 19
2-7—Component Role ... vevreneresaretnrererossrerinnne 2= 16
2-8—Normal, Redundant, and Replaccment Set Components e 2018

2-9—O0bject Component .. RO O OOTOOTD. ol .
2-10—Autribute Componems rrmveerereara et e nrtrararesseneranssarerararsrnenanensnsraranesarararasesnnns Sm20)
2-11—IFLR Modifier OPHONScccoveeniiiiiicrcminiiciciineissiee s sereseresmeseereeseensns. 2223
2-12—Representation Code Summary rerersess s s sss s ssens 2723
2-13—Compound Representation Code Descrlpuons TP RO TOTURPPRTRIUOP. . ¥

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

—

API RPxLb 95 BB 0732290 0556740 147 WA

Recommended Practice for Exploration and Production
Data Digital Interchange
Part 2: Logical Format

0 Introduction

0.1 This standard contains introductory, normative, and annotative information.
Introductory information comprises everything that precedes Section 1, Scope, The
introductory clauses describe how the publication is organized and provide commentary on
the history and purpose of this standard, Normative information includes the actual
requirements that must be satisfied by any data conforming to the standard. Annotative
information is provided as rationale for and illustrations about the normative information and
does not constitute part of the standard. The standard is completely stated even if all
introductory and annotative information are removed. Annotative information may refer to
terms introduced in later paragraphs or parts in order to tie together concepts, i.e., from time
to time its value may increase after the reader has made a complete pass over the standard.

0.2 Different styles are used to distinguish between normative and annotative
information.

0.3 All normative information is written using this same font, and is contained in either
numbered paragraphs or numbered tables. Normative text is aligned with the left margin
of the page.

0.4 All figures are annotative, and all annotative text is wrilten in unnumbered
paragraphs in Helvetica italic font, indented, as shown here:

This is a paragraph of annotative text, Its purpose is to include informal
commentary on the normative information in immediately preceding or
following paragraphs and may include references to or usage of normative
information in other parts of the standard.

1 Scope

This part describes the logical format of data recorded under API Recommended Prac-
tice 66. The logical format is a sequential, media-independent organization of 8-bit bytes
used to represent data.

2 References

Unless otherwise specified, the most recent editions or revisions of the following
standards, codes, and specifications shall, to the extent specified herein, form a part of this
standard,

ANSI!
STD 754-1985 [EEE Standard for Binary Floating Point Arithmetic
X34 American Standard Code for Information Interchange (ASCH)

1S0?
8859-1 Information processing—8-bit single-byte coded graphic character
sets—Part I: Latin alphabet No. 1
" American National Standards Institute, 11 West 42nd Street, New York, New York 10036.

International Organization for Standardization, SO publications are available from ANSI.

2-1

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

API RPxbLbL 96 HR 0732290 055L741 D&3 HE

2-2 APl RECOMMENDED PRACTICE 66, V2

3 Definitions

3.1 absent value: A placeholder that represents no value where a value is normally
expected to be. For attributes, this may be an absent attribute component or a zero count.
For channel samples, this is a zero count of the channel’s dimension.

3.2 attribute: A named item of information or data pertaining to an object type.

3.3 attribute count: The number of elements in an attribute value,

3.4 attribute label: The name of an attribute.

3.5 attribute representation code: A code that identifies the recorded representation of
each element of an attribute value,

3.6 attribute units: An expression that represents the units of measurement of each
element of an attribute value.

3.7 attribute value: The value of an attribute. It may be present or absent. When present,
it consists of zero or more elements, each having the same units and the same
representation.

3.8 characteristic: A subitem of 2 component that contains one piece of information for
a data item. Characteristics of an attribute component, for example, are its label, count,
units, representation code, and value.

3.9 checksum: The integer result of a 16-bit cyclic redundancy computation on the
bytes of a logical record segment, excluding the checksum result itself and any bytes (e.g.,
the logical record trailing length) that follow it. It is used to verify possible physical
recording errors in the logical record segment.

3.10 component: A construct used to implement recording the parts of a set. It contains
a descriptor that specifies which kind of data item the component represents and contains
subitems called characteristics that describe and contain the value of the data item. A set
consists of a sequence of components.

3.11 component descriptor: The part of a component that describes its role and which
characleristics are present,

3.12 component format: A value in the component descriptor that indicates which
characleristics are present.

3.13 component role: A value in the component descriptor that identifies what kind of
data item the component represents, which include set, object, attribute, absent attribute,
replacement set, redundant set.

3.14 compound representation code: A representation code that has two or more
subfields.

3.15 consumer: The system or application program or company thal reads or uses API
Recommended Practice 66 information.

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

API RPxLL S EM 0732290 0556742 TILT HH

EXPLORATION AND PRODUCTION DATA DIGITAL INTERCHANGE, PART 2: LOGICAL FORMAT

. 3.16 copy number: One of three parts of an object name. It is used to distinguish two
objects of the same type in the same logical file that have the same origin and identifier,

3.17 dictionary: A database in which identifiers and reference values used under API
Recommended Practice 66 are maintained and administered.

3.18 EFLR: Explicitly formatted logical record. The content of an EFLR, which consists
of a set of objects, is determined from an analysis of the record itself.

3.19 element: One of a list of homogeneous guantities that make up the value of an
attribute or channel. Every ¢lement of a value has the same units and representation.

3.20 explicitly formatted logical record: See EFLR.

3.21 format version: A two-byte field in the visible record header immediately
following the length ficld that identifies the API Recommended Practice 66 version of the
data in the record. The version is a one-byte unsigned integer, preceded by a byte
containing the value FF,.

3.22 identifier: One of the three parts of an object name. It is a character string used to
distinguish the object from other objects of the same type. For some designated object
types, the identifier conveys meaning of the nature of the object, and the identifier and its
meaning are maintained in a dictionary.

3.23 IFLR: Indirectly formatted logical record. The content of an IFLR is determined
. from an analysis of related EFLRs.

3.24 Indirectly formatted logical record: See IFLR.

3.25 logical file: The main unit of data exchange. It consists of a sequence of one or
more logical records, beginning with a record containing a single FILE-HEADER object,

3.26 logical format: A description of how to encode data in a media-independent
sequence of 8-bit bytes. This is the view of API Recommended Practice 66 that is
independent of any physica!l binding.

3.27 logical record: An organization of data values into coherent, semantically-related
packets of information. A logical record may have any length greater than sixteen bytes
and is organized in one of two syntactic forms: explicitly-formatted logical record (EFLR)
or indirectly-formatted logical record (IFLR).

3.28 logical record body: An ordered sequence of bytes representing the primary data
of a logical record.

3.29 logical record segment: A construct that contains the structure necessary to
describe and support the physical implementation of a logical record. A logical record is
implemented as one or more logical record segments. A segment is wholly contained in a
visible record, but two segments of the same logical record may be in different visible
records.

3.30 logical record segment attributes: The 16 bits of binary data that describe the
attributes of a logical record segment.

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

API RPxbLL 9b HB D7?32290 055L733 95, WA

2-4 APl RECOMMENDED PRACTICE 66, V2

3.31 logical record segment body: Onc part of an ordered partition of a logical record
body into disjoint parts. A logical record body can be reconstructed by concatenating ajl
the segment bodies of the record.

3.32 logical record segment encryption packet: The part of a logical record header
that contains information required to decrypt the segment,

3.33 logical record segment header: The pari of a logical record segment that
describes its length, attributes, and may contain an encryption packet.

3.34 logical record segment trailer: The part of a logical record segment that contains
optional padding, checksurn, and segment trailing length.

3.35 logical record structure: A logical record segment attribute. It specifies whether
the logical record is an EFLR or IFLR.

3.36 object: A recorded instance of an object type.
3.37 object component: A component that delimits an object and contains its name.

3.38 object name: A three-part unique reference to an object consisting of an origin, a
copy number, and an identifier.

3.39 obiject type: A logical entity of a schema that has a unique type name and one or
more defined auributes. Instances of an object type are written in explicitly formatted
logical records.

3.40 organization code: A number assigned by API to an organization that identifies
the organization and represents schernas and dictionaries defined and administered by the
organization,

3.41 origin: One of three parts of an object name. It is a number referring to a distinct
ORIGIN object that contains context information for the objects that reference it.

3.42 pad count: The part of the padding (written at the end) that specifies how many
padding bytes there are.

3.43 padding: Optional extra bytes following the logical record segment body used to
ensure an even length for a segment and also fo extend a segment when necessary to fill
out a fixed-length visible record.

3.44 physical format: The medium-specific organization of data bytes on a storage unit,

3.45 producer: The system or application program or company that recorded
information under API Recommended Practice 66.

3.46 redundant set: A verbatim copy of a set written previously in the same logical file.

3.47 replacement set: An updated copy of a set written previously in the same logical
file. It includes any updates made to objects in the set since the original was written,

3.48 representation code: A unique number that identifies a standard encoding for a
value as a sequence of one or more contiguous bytes.

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

—

API RPxbb 9 ER 0732290 0556784 892 WR

EXPLORATION AND PRODUCTION DATA DIGITAL INTERCHANGE, PART 2: LOGICAL FORMAT

- — — - Logical

3.49 set: A collection of one or more objects of the same object type. A set is recorded
in an EFLR, and each EFLR has exactly one set,

3.50 set type: The type of objects in a set.

3.51 subfield: A part of a datum for which the representation is described by a simple
(not compound) representation code. For example, the subfields of a datum having
representation code OBNAME are, in order, an integer (UVARI), another integer
(USHORT), and a string (IDENT).

3.52 template: An ordered group of one or more attributes that represent a default or
prototype object, written at the beginning of a set.

3.53 visible record: The interface between the logical format and a2 medium-specific
physicul Tormat. A visible record has a header, a body, and a trailing length.

4 Concepts

4.1 The AFI Recommended Practice 66 logical format is a description of how to encode
data in a media-independent sequence of 8-bit byles. At the highest level, the logical
format is a sequence of logical files. A logical file is subdivided into a sequence of related
logical records. A logical record contains a set of related values and is subdivided into a
scquence of logical record segments. A logical record segment is contained in a visible
record. A visible record has a header and trailer and may contain one or more segments. A
visible record consists of a sequence of bytes mapped into some physical medium. The
physical mapping of visible records into various media types is described in Part 3.

format Logical files

Logical records

Logical record segments

Visible/r{cords

Physical
- = — - format

Figure 2-1—Conceptual View of a Logical Format {Bound to a Physical Format)

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

API RPxtbL 9k EM 0732290 0556785 729

2-6 APl RECOMMENDED PRACTICE 66, V2

Figure 2-1 shows the transition from media-dependent organization of data (the
physical format) to media-independent organization of data (the logical format).
Notice that the two overlap at the visible record layer. Viewed from “above”, the
visible record layer is just a record-oriented organization of a strearn of bytes,
which looks the same to higher layers regardless of the medium used to record
the bytes. Viewed from “below”, the visible record layer is a mechanism that
supports mapping logical constructs onte physical constructs such as device
blocks and muftiple storage units (e.g., tapes or disk files).

Logical record segmentation supports the flexible mapping of logical records
{which may be of highly-varying sizes) into visible records. in particular,
segments make it possible to begin a new logical racord in the middle of a
visible record. This resulls in two benefils. One, fixed-length visible records may
be used. This provides a powerful recovery method in case corrupted data is
ehcountered and also alfows implementation of random access methods. Two,
sagmentation allows efficient packing of logical records into larger device
blocks while also allowing spanning of large logical records across smaller
device blocks.

4.2 A value, whether in a logical record or a visible record header or trailer, is encoded
in one or more contiguous bytes according to one of a variety of standard representations.
Each standard representation is identified by a unique integer code, called a representation
code.

5 Representation Codes

5.1 A representation code is a unique number, specified in Table 2-12, that identifies a
standard encoding for a value as a sequence of one or more contiguous bytes, Each
representation code has a corresponding symbolic name used in this document to refer to
the code. For example, the name UNORM refers to representation code 16, which
identifies an encoding of an unsigned integer using two bytes, Only the encodings
specified in this document may be used to encode values in API Recommended Practice
66. Only the representation codes specified here may be used 1o identify the encodings,
and no representation codes may be redefined except by future editions of this document.

5.2 An encoding representation may be simple or compound. A simple representation is
an encoding of a single atomic value such as an integer, decimal number, or character
string. A compound representation is an encoding that is built up of previously-defined
encodings and represents two or more simple values organized into a useful structure. The
Iength of every representation is either fixed or may be determined from its content.

5.3 A subfield of a representation is any part of the representation that corresponds to a
simple encoding (with an exception for representation code DTIME). Each subfield of a
representation has a subfield name and subfield position, described in Table 2-13.

Representation code DTIME uses 4-bit fields to rapresent time zone and
month.

Representation codes IDENT and ASCH include USHORT and UVARI values,
respectively, to count number of characters in a string. However, there is no
simple representation code corresponding to only the characters. Conse-
guently, IDENT and ASCII are considered to be simple representations rather
than compound.

5.4 The representation codes specified in Table 2-12 are divided into representation

code classes. The codes in a representation code class are capable of representing the same .
kinds of values. Codes within a class are typically differentiated by amount of range or

precision or alignment to a particular computing architecture.

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

API RPxbb 9b EM 0732290 055L78k bLkS N

EXPLORATION AND PRODUCTION DATA DiGITAL INTERCHANGE, PART 2: LOGICAL FORMAT

For examptle, the codes UNORM {normal unsigned integer) and FOOUBL
(double precision floafing point) are in the same large class, since each is
capable of representing a number. FDOUBLE has more range and precision
than UNORM.

This organization of codes into classes is used when defining attributes for a
schema (see Part 1). A rapresentation code resiriction may be specified for the

attribute to indicate its possible range and precision, but any other code in the
class may be used that supports the value being recorded,

6 Visible Record

6.1 Overview

6.1.1 Visible records are the interface between the logical format and a medium-specific
physical format. They provide a structure that can be mapped into device structures and
into which logical record segments may be packed.

6.1.2 A visible record is composed of three disjoint parts in the following order:
a. Visible record header.

b. Visible record body.
¢. Visible record trailer.

6.1.3 The parts of a visible record are described in detail in 6.2 to 6.4,

visible record '

Y seament [sogmont I seomont J§ K engtn |

Slongth B Fr R 2 B file sequence number

Figure 2-2—Visible Record Structure

6.2 Visible Record Header

6.2.1 The visible record header contains information about the length of the visible
record, the format version being used, and the logical file in which the segments contained
in the visible record belong.

6.2.2 Table 2-1 describes the fields of a visible record header in the order in which they
appear.

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

APT RP*bbk 9- EM D?732290 055L787 5T1 HH

2.8 AP RECOMMENDED PRACTICE 66, V2

Table 2-1 — Visible Record Header Fields

*Note Field Size in Bytes Representation Code
1 Length 4 ULONG
2 The value FF ¢] USHORT
3 Format version 1 USHORT
4 File sequence number 4 ULONG
5 File section number 2 UNORM

*Noles:

l. This field specifies the length in bytes of the visible record, including the header, body, and wailer. The max-
imum length of a visible record is limited by the largest even number having representation ULONG (see
Table 2-12). This number is 4 294 967 294. The actual maximum length used for a visible record may depend on
which medium the data is recorded (see Part 3). The minimum length of a visible record is the length of its
header plus trailer plus the minimum length of a logical record segment (see Table 2-2).

2. This field contains the hexadecimal valve FF, lts purpose is twofold: (1) to make the header length even, and
(2) to provide a necessary (although not sufficient) identifier of a visible record.

3. The format version field contains the major APl Recommended Practice 66 version of the data being
recorded. For this edition of the standard, the format version value is 2.

4. This is the sequence number of the logical file to which the segments contained in the visible record body
belong {see Part 6). Inclusion of this field implies the following requirement: All of the logical record segments
contained in a visible record must belong to the same logical file.

5. This is the section number of the logical file to which the segments contained in the visible record body
belong (see 10.1).

How visible records are used for various media types and various application
purposes is described in Part 3. This includes how to specify variable-length or
fixed-length visible records, for example.

By having a file sequence number in the visible record header, it is possible to
implement rapid file access methods based on scanning only visible record
headers. If visible records are fixed-length, for example, an application may
compute forward or backward a given number of visible record lengths, jump to
that location and determine by looking at the visible record headear whether the
jump landed inside or outside the current logical file.

In AP Recommended Practice 66, Version 1, the visible record length was arbi-
trarily limited to 16,384 even though its representation (UNORM) supported
lengths up to 65,534. This was done to ensure that implementations on small-
memory processors would not be prevented from reading any AP! Rsecom-
mended Practice 66 data. This was found o be a burdensome limitation and
one that should be administered by the various user groups. So, in this edition
of the standard, no arbitrary length limitation is imposed beyond what is sup-
ported by the ULONG representation.

6.3 Visible Record Body

The visible record body consists of one or more complete logical record segments (see
7.1.4).

6.4 Visible Record Trailer

The visible record trailer consists of a copy of the length field from the visible record
header. This is always present.

7 Logical Record
7.1 Overview

7.1.1 Logical records organize values into ccherent, semantically-related packets of .
information. A logical record may have any length greater than or equal to sixteen bytes

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

API RPxbb 9 MR 0732290 D55b788 u38 WM

EXPLORATION AND PRODUCTION DATA DIGITAL INTERCHANGE, PART 2: LOGICAL FORMAT

. and is organized in one of two syntactic forms: explicitly-formatted logical record (EFLR)
or indirectly-formatted logical record {IFLR).

7.1.2 The content of an EFLR is determined from an analysis of the record itself. That
is, an EFLR is self-descriptive in the sense that the type of, order of, and amount of
information it contains may be determined by reading the record. Further information
about EFLRs is given in 8.

7.1.3 The content of an IFLR is determined from an analysis of related EFLRs. The type
of, order of, and amount of information in an IFLR is described by information in one or
more EFLRs. A reference within each IFLR allows a reader to locate the data items within
EFLRs that describe it. Many IFLRs may reference the same descriptor information.
Further information about IFLRs is given in 9.

EFLRs and IFLRs are designed to handle different kinds of data, the
differences resulting from either form or purpose. One of two views typically
applies:

The first view is static vs dynamic. Static data has a fixed or static value within
the context of a logical file and is racorded in EFLRAs, Dynamic data has a
dynamically-changing value in a logical file, each instance of the value
cccurring in a different IFLR. For exampile, the description of a sensor is static,
whereas the values acquired by the sensor over time are dynamic.

The second view is parametric vs bulk. Parametric data is complex (typically

tabular) in form and of known extent, whereas bulk data is sequential in form

and has an indefinite extent, i.e., the extent may not be known when data

recording begins. Parametric data, e.g., computation parameters, is recorded in
. 4EFLRAs and bulk data, e.g., seismic traces, is recordad in IFLAS.

7.1.4 A logical record is implemented as one or more logical record segments.
Segments contain the structure necessary to describe and support the physical
implementation of a logical record. A segment is contained in a single visible record and is
composed of up to four mutually-disjoint parts in the following order:

Logical record segment header.

Logical record segment encryption packet (only with encryption),
Logical record segment body.

Logical record segment trailer (optional).

aooe

7.1.5 The parts of a segment are described in detail in 7.2 through 7.8.

There is a very strict relation betweaen segments and visible records. As stated
earlier, a visible record body consists exactly of a whole number of logical
record segments. Segrments cannot span visible records, but logical records
can and frequently do. It is alsc common for many logical records to fit into one
large visible record, in which case each logical record normally has only one
segmemt. A logical record will typically have more than one segment only when
it cannot fit completely into the current visible record. The power of segments is
that they allow complale separation of logical record and visible record
alignment. The only exception to this alignment independence is with the first
logical record of a logical file, which is described later.

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

API RPxbb 96 EM 0732290 0556789 374 WA

2-10 APl RECOMMENDED PRACTICE 66, V2

Figure 2-3 and Figure 2-4 illustrate logical record sagmentation.

unencrypted logical record

Figure 2-4—Logical Record Segmentation (With Encryption)

7-2 Logical Record Segment Header

7.2.1 The segment header describes the segment’s length and attributes. The attributes
indicate the kind of logical record, whether the segment is the first, middle, or last of the
logical record, whether the segment is encrypted, and which optional parts of the segment
are present.

7.2.2 Table 2-2 describes the fields of a logical record segment header in the order in
which they appear.

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

API RP*bb 96 EE 0732290 0556790 09 MW

EXPLORATION AND PRODUCTION DATA DIGITAL INTERCHANGE, PART 2: LOGICAL FORMAT

Table 2-2 — Logical Record Segment Header Fields

*Note Field Size in Bytes Representation Code
1 Length 4 ULONG
2 Attributes 2 (see note)
*Notes:

I. This field specifies the length in bytes of the segment, including the header, encryption packet, body, and
trailer. A segment is required to have an even number of at least sixteen (16) or more bytes. The maximum length
of 2 logical record segment is limited by the largest even number having representation ULONG (see Table 2-
12). This number is 4 294 967 294.

2. Attributes are represented by bit values in a two-byte field, where bit 8 of each byte represents the highest-

order bit and bit | represents the lowest-order bit (see Table 2-3).

The even length ensures that two-byte checksums can be computed. The
minimum size, when combined with visible record overhead ensures a
minimum physical block size required by some devices.

7.2.3 Table 2-3 describes the meanings of the bits in the logical record segment header
attributes field. A bit is said to be set if its value = 1, and clear if its value = 0.

Table 2-3 — Logical Record Segment Header Attributes

*Note Byte:Bit Label Value Description
1 1:8 Logical record structure

=]

indirectly-formatted logical record.
Explicitly-formatted logical record.

1
2 1:7 Predecessor (] This is the first segment of the logical record,
| This is not the first segment of the logical record.
3 1:6 Successor 0 This is the last segment of the logical record.
l This is not the last segment of the Yogical record.
4 1:5 Encryption 0 The segment is not encrypted.
1 The segment is encrypted.
5 14 Reserved 0 This bit is veserved for future use.
1:3 Checksum [The segment trailer does not have a checksum.
| The segment trailer has a checksum.
7 1.2 Trailing leagth 0 The segment trailer does not have a trailing fength.
1 The segment trailer has a trailing length.
8 1:1 Padding 0 The segment trailer does not have pad bytes.
1 The segment trailer has pad bytes.
9 2:8-1 Reserved 4] These bits are reserved for future use.
*Notes:

All segments of a logical record must have the same value for the logical record structure bit,

When the predecessor bit is set, then the seginent has a predecessor segment in the same logical record.
When the successor bit is set, then the segment has a successor segiment in the same logical record.

All segments of a logical record must have the same value for the encryption bit. For rules on how 1o apply
encryption, see 7.8,

5. This bit was previously used (in Version 1) to indicate presence of the encryption packet. In the current
version, presence of the encryption packet is determined by the predecessor and encryption bits.

6. See Table 2-5 and 7.6.

7. See Table 2-5.

8. Sec Table 2-5.

9. Bits 2:1-8 must be clear. Meanings for these bits may be defined in later editions of this part.

B =

7.3 Logical Record Segment Encryption Packet

7.3.1 The segment encryption packet immediately follows the segment header if and
only if the predecessor bit is clear (no predecessor) and the encryption bit is set in the
segment attributes. The packet includes its own length, who encrypted the segment, a

translation tag, and may include information about the encryption method and decryption
keys.

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

API RPxbb 9- ER 0732290 0556791 Tec R

2.12 APl RECOMMENDED PRACTICE 66, V2

7.3.2 Table 2-4 describes the contents of an encryption packet.

Table 2-4 — Logical Record Segment Encryption Packet Fields

*Note Field Size in Bytes Representation Code
1 Packet length 2 UNORM
2 Producer code 4 ULONG
3 Translation tag v OBNAME
4 Encryption information v (see note)
*MNotes:

}. This is the length of the packet in bytes, including all fields. This field is required.

2. This is the organization code of the group responsible for the computer program that encrypted the record
(see Appendix A). This field is required.

3. The translation tag is the name of an ORIGIN-TRANSLATION object. This field is required.

4. The encryption information is provided by the producer and has a representation known only 1o the producer
(identified by the producer code field) of the logical record. It is used to assist producer-written computer
programs in decrypting the logical record. It may consist of zero or more bytes.

The format of the encryption information is known only to the producer of the
encrypted data. To the general reader, the encryption information field is just a
group of bytes.

{The following discussion uses terminology from Part 6.) The purpose of the
translation tag is to make it possible for ‘pass-through” copy-merge operalions
by organizations that encounter encrypled records they can't decrypt.

When data from two logical files is merged into a new logical file, some origin
number collisions may occur (e.g., origin 3 is used in both input files). Such
collisions are resolved by renaming the origin from one of the input files and alf
references to it in the oulput file. (This is called “origin transiation”.) Since

origins in encrypted records can't be seen, they also cannot be transiated. The

transiation tag in the encryption packet links this record with an optional

ORIGIN-TRANSLATION object that has been recorded “in the clear’ and that

includes alf the origins used in the encrypted record. When files are merged,

the origins in the ORIGIN-TRANSLATION object, if provided, and the

transiation tag can be translated when copied. This makes it possible for later

readers able to decrypt the merged data to figure out how 1o transiate the

origins in the decrypted record.

7.4 Logical Record Segment Body

The logical record segment body is an ordered sequence of zero or more bytes. The
segment body immediately follows the encryption packet when the packet is present or
immediately follows the segment header if the packet is not present. The length of the
segment body is computed by subtracting the lengths of the encryption packet, the
segment trailer, and the segment header from the segment length found in the header.

A zero-length segment body may be uselul in the following situation:

A logical record is “edited” by replacing it with a revised version. If the
replacement has less data than the original, then the replacement will require
less space than the original. However, a replacement must cover the original
space exactly. One way to handle this is to add padding. However, if multiple
segments are required (e.g., the logical record spans visible records), then the
replacement body data may be used up before writing the last segment. In this
case, the last segment may have a zero-length segment body.

7.5 Logical Record Segment Trailer

7.5.1 The logical record segment irailer immediately follows the segment body. lts
contents are optional and may include a segment trailing length, a checksum, and padding.

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

-

API RP*bb 9b EE 0732290 0556792 9L9 W

EXPLORATION AND PRODUCTION DATA DIGITAL INTERCHANGE, PART 2: LOGICAL FORMAT

2-13

7.5.2 Table 2-5 describes the contents of the logical record segment trailer.

Table 2-5 — Logical Record Segment Trailer Fields

*Note Field Size in Bytes Representation Code
1 Pad bytes v USHORT
1 Pad count 4 ULONG
2 Checksum 2 UNORM
3 Trailing length 4 ULONG
*Notes:

1. The pad count value is 4 (its own size) plus the number of pad bytes when padding is present (padding bit set
in the segment attributes). There may be zero or more pad bytes in addition to the pad count. The pad count is
present if and only if the padding bit is set in the segment attributes. Padding is used 10 ensure an even length for
a segmenlt and also to extend a segment when necessary to fill out a fixed-length visible record, and may be used
for other reasons.

2. The checksum is a two-byte value computed according to the algorithm given in 7.6. 1t is present if and only
if the checksum bit is set in the segmen attribates. The computation applies to everything in the segment that
precedes the checksum and does not include itself or the trailing length. If the segment is encrypted, the
checksum is computed after encryption has been applied.

3, The trailing length is present if and only if the trailing length bit is set in the segment attributes, When
present, it is a copy of the length field from the segment header. Trailing lengths must be used consistently for all
segments in a logical file (see 10.2). That is, all segments in a logical file must have a trailing length, or all
segments must have no trailing length.

The length of the traiter is T + C + F, where T is 4 if the trailing length is present
and zero otherwise, C is 2 if the checksurm is present and zero otherwise, and
P is the value in the pad count if padding is present and zero otherwise.

When random access is supported by the device, and trailing lengths are
present, it is possible for an implementation lo read logical records from back
to front.

7.6 Checksum Algorithm

The checksum, when present, is a 16-bit integer quantity computed using a cyclic-
redundancy type checksum algorithm. This algorithm is described below, Note that it
assumes that there are an even number of bytes in the data.

1) c=0 initialize 16-bit checksum to
zZero
2} loop i=1l,n,2 loop over the data two bytes

at a time

3) t=byte{i+l)*256+byte(i) compute a 16-bit addend by
concatenating the next two
bytes of data

4) c=c+tL add the addend to the checksum
5) if carry c=c+l add carry to checksum

6} c=c*2 left shift checksum

7) if carry c=c+l add carry to checksum

8) endlocop

7.7 Logical Record Body

The logical record body is an ordered sequence of bytes representing the primary data
of the logical record. The segment bodies comprise an ordered partition of the logical
record body into disjoint parts. That is, the logical record body can be reconstructed by
concatenating all the segment bodies of the record. The logical record body cannot be
empty, i.e., at least one segment body must be non-empty. The format and rules for decod-
ing information in the logical record body are described in 8 and 9.

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

API RPxbb 9L WM 0732290 0556793 a4T5

2-14 APl RECOMMENDED PRACTICE 66, V2

7.8 Logical Record Encryption Rules

7.8.1 Encryption is applied at the logical record level. Data that would normally represent
an unencrypted logical record body is encrypted by some method known by the data
producer. This may involve expansion or compression of the data; that is, the number of
encrypted bytes may be different from the number of unencrypted bytes. Logical record
segmentation is then applied to the encrypted bytes, which constitute the recorded logical
record body. No header, encryption packet, or trailer bytes (including padding) are encrypted.

7.8.2 When a logical record is encrypted, the encryption bit must be set in all segments.
The first segment must have an encryplion packet, and no other segments may have an
encryption packet. Information required to decrypt the data (including use of any
extraneous byies to satisfy encryption blocking requirements) is placed in the encryption
information field of the encryption packet.

Since encryption is applied without regard fo segmentation, implementations
may need to support encryption and decryption methods that require in-
memory buffering of entire logical record bodies. Unencrypted records, on the
other hand, can normally be accessed a segment at a time, and some
implementations may wish to utilize this feature to conserve memory when
processing very large logical records.

8 Explicitly-Formatted Logical Record (EFLR)
8.1 Overview

8.1.1 The data in an EFLR body (logical record body of an EFLR) is formatted using a
general structure similar in nature to a table having a column heading, followed by any
number of rows. The heading is called a template, and the rows are-called objects. Within the
template and within each object the column entries are called atiributes. However, unlike a
table, each object also has a name which is not considered to be the same as an attribute. The
table (template plus objects) is called a set. Each EFLR body consists of exactly one set
having at least one object, so the term set is a synonym for the term EFLR body.

EFLR body

FOO set

object B

Figure 2-5—Application-Level View of a Set (Type = FOO)

API Recommended Fractice 66 uses the terms set, template, object, and
attribtte instead of table, heading, row, and column entry tc emphasize the
objact-oriented features of the data items in an EFLR. Although the structure

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

API RPxbL 95 MM 0732790 0556794 731 N

EXPLORATION AND PRODUCTION DATA DIGITAL INTERCHANGE, PART 2! LOGICAL FORMAT

2-15

is “similar in nature to a {able”, there are enough differences from classical
tables to warrant the newer lerminology.

8.1.2 Implementation of the component parts of a set is done using a construct called
component. A component contains a descriptor that specifies which kind of data item the
component represents and contains subitems called characteristics that describe and
contain the value of the data item. A set, then, consists of a sequence of components.

EFLR body

_ attribute
component

6 7 8
" object | attribute atiribute attribute
COmpOnent componenl COmpOnin COmpOnent
attribute
component

Figure 2-6—Component-Level View of a Set

8.1.3 The detailed description of set structure is given in 8.3,

8.2 Component

8.2.1 A component has a descriptor and zero or more characteristics. Table 2-6 describes
the structure of a component. Bits are labeled 1 through 8§, where 1 is the low-order bil.

Table 2-6 — Component Structure

*Note Field Size in Bytes
I Descriptor |
2 Characteristics \Y

*Notes:

I. The descriptor of a component is subdivided into two disjoint bit ficlds. The first field, bits 8-6, represents

the component’s role (see Table 2-7). The second field, bits 5-1, represents the component’s format (see 8.2.3).

2. A component has zero or more characteristics, as specified by the format subfield of the descriptor. The

characteristics of a component identify, describe. and evaluate the data item represented by the component.

8.2.2 The component’s role indicates what kind of data item the component represents
and also determines which characteristics are represented by the format bits. Currently-
defined component roles are described in Table 2-7.

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

API RP*bb 9L HE 0732290 055L795 L78 HH

2-16 APl RECOMMENDED PRACTICE 66, V2

Table 2-7 — Component Role

#Note Bits8-6 Symbolic Name Type of Component
1 000 ABSATR absent attribute
2 001 ATTRIB attribute
3 010
4 011 OBJECT object
§ 100
6 HH RDSET redundant set
7 110 RSET replacement set
8 11 SET normal set
*Notes:
1. See8.6.
2, Sce8o

3. This role is reserved and currently has no meaning. In APl Recommended Practice 66, Version 1, this role
represents an invariant attribute component. This component type is dropped in the current APl Recommended
Practice 66 version, since its use increases the complexity of implementations for very little benefit (at best one
byte of storage savings per object when used).

4. SeeBS.
5. This rele is reserved and currently has no meaning.
6. See 8.3,
7. See 83
£ See8.3.

8.2.3 The component’s format specifies which of the characteristics for the given type
of component are actually present in the component. Each component type (identified by
its role) has a predefined group of characteristics that may occur in a predefined order.
Each characteristic is represented by a bit in the format field of the descriptor. The
characteristic is present in the component if and only if its bit is set. A global default value
may be specified as part of the definition of a characteristic. This is a value that shall be
assumed if the characteristic is nol present. Characleristics immediately follow the
descriptor in the same order as the format bits by which they are specified. There are no
gaps for omitted characteristics.

B component B

Figure 2-7—Component Structure

B.3 Sets

8.3.1 A set has a non-null type, a template, and one or more objects. It may also have a
name and a count of its objects. The type identifies the type of objects in the set, and is
also referred to as the object type of the set. The optional set name may be used 10
distinguish the set from other sets in the logical file when this is necessary and must be
non-null when present.

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

API RP*bb S9b EM 0732290 055k79k 504 =&

EXPLORATION AND PRODUCTION DATA DIGITAL INTERCHANGE, PART 2: LOGICAL FORMAT 217

. 8.3.2 Any number of sets in a logical file may have the same object type, but no two
may have the same non-null set name,

8.3.3 There are three kinds of sets (see Table 2-7):

a. Normal set
b. Redundant set
c. Replacement set.

8.3.4 A normal set is as described in 8.3.1. 1t is the predominant kind of set.

8.3.5 A rcdundant set is an exact copy of a normal set written previously in the same
logical file. Its purpose is 1o provide redundancy of information as insurance against
possible data corruption (c.g., from media errors) of the normal set. The link between a
redundant set and the normal set of which it is a copy is by means of the set name or type.
If there is a redundant set, it and the normal set of which it is a copy must have the same
non-null set name unless the normal set is the only one in the logical file having a given
type. In the latter case, set name is optional. Any number of redundant sets may be written
for a given normal set,

8.3.8 There is a mechanism using UPDATE objccts (see Part 6) for modifying the value
of an auribute previously written in a logical file. A replacement set is a near copy of a
normal set previously written in the same logical file, the difference being that the
replacement set reflects application of all updates that have been made between the time
the normal set was recorded and the time the replacement set is recorded. The replacement
set has the same objects as the normal set and the same attributes, but some attributes may

. have updated values. The link between a replacement set and its corresponding normal set
is by means of the set name or type as described for redundant sets in 8.3.5. Any number
of replacement sets may be wrilten for a given normal set.

The purpose of replacement sels is to provide data repfication when a logical
file spans multiple storage units. If a normal set is used 1o interpret the format
of an IFLR sequence {or affects computations using IFLR data), having a
replacement set on each of multiple storage units ensures that loss of the initial
storage unit will not prevent the ability to read data on continuation storage
units.

Note that replacement sels are needed in lieu of redundant sets only when
updates have been applied to data in the normal set.

8.3.7 A set’s type, name, and ohject count are characteristics of a normal, redundant, or
replacement set component. A normal, redundant, or replacement set component is the
first component in the set, i.e., in the EFLR body. A set has exactly one normal, redundant,
or replacement set component. Table 2-8 describes the format and characteristics of such
components.

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

API RPxbb 9b EE 0732290 0556797 uuD N

2-18 APl RECOMMENDED PRACTICE &6, V2

Table 2-8 — Normal, Redundant, and Replacement Set Components

*Note FormatBit Symbol Characteristic Representation Code Global Default Value
1 5 t type TIDENT (see note)
2 4 n name IDENT nufl
3 3 c count ULONG nufl
4 2-1
*Notes:

I. The type characteristic identifies the object type of the objects in the set and references the schema (see Part
1} under which the object type (i.e., its list of available attributes and their meanings) is defined. The schema is
obtained from the QORIGIN:SCHEMA -CODE attribute (see Part 6} located using the tag subfield (see Table 2-13)
of the characteristic. The object type is given by the identifier subfield of the characteristic. A non-nutl value
(both subfields) of this characteristic imust always be explicitly present. There is no global default value.

2. When present the name must be non-null. It is optional unless required to establish a link between redundant
and normal sets (see 8.3.5) or between replacement and normal sets (see 8.3.6). No two normal sets in a logical
file may have the same non-null name.

3. The count characteristic is optional. When present and non-null it specifies the number of objects in the set.
A null value is valid and indicates a count has not been provided.

4. These bits are reserved. For the current format version, they are always clear (value = ().

8.4 Templates

8.4.1 A template is an ordered group of one or more attributes that represent a default or
prototype object. The template is recorded as one or more attribute components
immediately following the set component. If a characteristic is omitted from an attribute
component in the template, then a global default value is assumed. Table 2-10 specifies the
global defauli values for attribute components.

8.4.2 The templates in two different sets having the same object type need not be the
same. They may differ by the order in which attribute components are written and also
may differ in the number and selection of attributes represented. The prototype object
written in a template represents a view (or subset) of the attributes defined by a schema for
a given object type. See Part 1 for a description of the methods used for defining a schema.

Whereas the object type is a name for the collection of attribules (i.e., column
headings) that may apply to the objects of the sel, the template contains the list
of attributes actually used in the sel, which may be a subset of the available
afiributes.

Note that a termplate may be emptly, that is, a set may have objects with no
atiributes.

8.4.3 A template is terminated when the first object component is encountered. There
muslt be al least one object component in any set.

8.5 Objects

8.5.1 An object has a name that uniguely identifies it within a logical file and has one or
more attributes. The object name is a characteristic of an object component (see Table 2-
9). The origin subfield of the object name identifies the schema (see Part 1) under which
the object type is defined via the ORIGIN:SCHEMA-CODE attribute (see Part 6). It must
identify the same schema identified by the tag subfield of the set type.

8.5.2 A schema may declare for each object type whether the identifier subfield of the
object name is administered in a dictionary. If so, the ORIGIN:NAMESPACE-CODE and
ORIGIN:NAMESPACE-NAME attributes identify the dictionary in which the identifier is
included. The namespace assigns a permanent meaning to the identifier. When an object

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

"

API RPxbb 96 EM 0732290 0556794 347 W

EXPLORATION AND PRODUCTION DATA DiGITAL INTERCHANGE, PART 2: LOGICAL FORMAT

type has a dictionary-controlled identifier, the two-character prefix ‘U-" may be used to
indicate an identifier not in the dictionary, in effect overriding the dictionary control on an
instance by instance basis. No dictionary-administered object identifier may begin with
these characters.

B.5.3 An object is written as one object component immediately followed by zero or
more attribute and/or absent attribute components. The attributes of an object correspond
in order to the attributes in the template, and any characteristic omitted from an attribute
component assumes the value of the corresponding characteristic from the template, or
global default value if also omitted from the template. Any characteristic explicitly present
in an object’s attribute component overrides what is in the template. An object may not
have more attributes than the template.

Although an object may be followed by zero aftribute components, it still has
onhe or more attributes due to inheritance from the template, which must have at

least one aftribute. It is invalid for an object to have all absent attribules, since
this would violate 8B.5.1.

B8.5.4 Use of an absent attribute component indicates that the atiribute in that position
has been deleted from the object, i.e., does not even have a default value.

8.5.5 An object may have fewer attribute components than its template. In this case, the
attributes for which components have been omitted assume all of the template default
characteristics for the object. Since attribute order in the object must match atiribute order
in the template, only trailing components may be omitted, i.c., if 2 component is omitied

for any attribute, then components must also be omitted for all subsequent aitribuies for
the current object.

To use all tamplate defaults, an “interior” attribute could have a component with
only a descriptor, i.e., with no explicit characteristics.

Note the difference between an omitted attribute component and an absent

aflribute component. In the first case, the attribute exists and has value for the

object, whereas in the second case, the attribute has no existence and no value
for the object.

8.5.6 An object is terminated when the end of the logical record is reached or when
another object component is encountered, whichever occurs first.

8.5.7 Table 2-9 describes the characteristics of an object component,

Table 2-9 — Object Component

*Note Format Bit Symbol Characteristic Representation Code Global Default Value
| 5 n name OBNAME (see note}
2 4-1
FNotes:

1. The name characteristic uniquely identifies the object in a logical file and must be present. There is no global
default value. To be unique in the legical file, the object name cannot match all three subfields~origin, copy num-
ber, identifier (see Table 2-13)-of any other object name in the logical file. The identifier subfeld must be non-
null

2. These bits are reserved. For the current format version, they are always clear (value = 0).

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

API RPxbb 9k EE (0732290 0556799 213 M

2-20 API RECOMMENDED PRACTICE 66, V2

8.6 Attributes

8.6.1 An arttribute has five characteristics, a label, a count, a representation code, a unit
{of measure), and a value. The first four characteristics identify and describe the value,
which consists of count elements, each having the same unit and representation code.
Attributes are represented by attribute components (see Table 2-10).

8.6.2 An absent attribute has no characteristics and is represented by an absent attribute
component, which has all format bits clear. The purpose of an absent attribute component
is to occupy a position for an attribute that is declared in the template but is logically
omitted from its object. An absent attribute component may only appear in an object and
must not appear in a template. When it appears in an object, it indicates that the attribute
corresponding to its position (as declared in the template) is omitted from the object and
has no value, no count, no unit, and no representation code.

8.6.3 Table 2-10 describes the characteristics of an attribute component.

Table 2-10 — Aftribute Components

*Note FormatBit Symbol Characteristic RepresentationCode Global Default Value

l 5 1 label IDENT (see note)

2 4 c count UVARI 1

2 3 r representation code USHORT IDENT

2 2 u unit UNITS null

3 1 v value (see note) null
*Noles
{. The label identifies an attribute. It is present if and only if the component is in the template. When present, .
the label nwust be non-null, and no two labels in the same template may be the same. There is no global default for
the label.

2. The couat, representation code, and unit describe the value. See note 3 for further details.

3. The value characteristic represents the value of the attribute. A value consists of zero or more ordered
elements, where the number of elements is given by count. Every element has the same representation code and
same unit, specified by representation code and unil. Inheritance and consistency rules for attribute characteristics
are given in 8.6.4.

8.6.4 The primary consistency rule for attribute characleristics is that count and
represeniation code must accurately describe the number and type of elements in value so
that the component can be parsed correctly. When a characteristic is present in an attribute
(its format bit is sel), it has precedence over the corresponding characteristic in the
template (or global default if the atiribute is in the template). Consistency among
characteristics is checked after inheritance, that is after template or global defaults are
obtained for omitted characteristics. After inheritance, if count = 0, value must have zero
elements. Count = 0 admits to two logical interpretations: If value is present, il is
considered to be a present but empty list. If value is omitted, it is considered to be absent.
After inheritance, if count > O value must have count elements. An inherited global default
value is considered to match any count. An inherited template value must match the actual
count after inheritance.

For exampls, if count = 3 and a global default value is inherited, then the
attribute is considared to have 3 global default elements. However, it is
inconsistent if 2 eleamenits are inherited from the template when the attribute
count is 3.

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

API RPxbb Sb B 0732290 0556300 &8L5 HE

EXPLORATION AND PRODUCTION DATA DIGITAL INTERCHANGE, PART 2; LOGICAL FORMAT

2-21

template object conceptual
attribute attribute view
label WEIGHT WEIGHT
count 1
representation code FSINGL FSINGL
unit kg kg
value 356.2 356.2 kg
label PROPERTIES PROPERTIES
count 3 3
representation code IDENT IDENT
unit !
value ‘ROUND' 'ROUND'
TALL 'TALL
‘BLUE' '‘BLUE'
label SIZE SIZE
count 1 2 2
. represaentation code FSINGL UNORM UNORM
unit in mm mm
value 11.6 255 255 mm
184 184 mm
In this example it would be invalid to omit value from the object attribute,
since this would lead to inconsistencies between the template vaiue and the
object attribute’s count, representation code and units.,
label VALUES VALUES
count 1 2 2
representation code ULONG ULONG
unit mm mm
value 0 mm
0 mm

In this example the template value would be interpreted as one unitiess blank
string (null IDENT), whereas the object attribute’s value consists of 2 null
ULONG elements having unit ‘'mm'. There is no inconsistency with the
template, since the template defers 1o the global default for value.

Figure 2-8—Examples of Attribute Components

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

API RPxbk 9 WE 0732290 055b801 7T1 HN

2-22 APl RECOMMENDED PRACTICE 66, V2

9 Indirectly-Formatted Logical Record (IFLR)
9.1 Overview

9.1.1 The logical record body of an IFLR is divided into three parts. The first part is a
data descriptor reference (DDR) having representation code OBNAME. The second part is
a modifier having representation code USHORT. The third part is a sequence of 8-bit bytes
representing indirectly formatted data.

EFLR

sen {FLR

name attributes

object

The{'notation [0,0,A] represents the
tigin, copy number, and identifier
x/ubﬁelds of an OBNAME value.

Figure 2-9—Structure of an IFLR Body and Relation to its Data Descriptor

IFLRs are typically used lo represent fixed-format records, where a potentially
large number of records need to be written efficiently both in time and space.
The data descriptor provides a ona-time description of the fields in the record,
including necessary index fields, and the DDR provides the key needed to sort

out which format description goes with which record, .

9.2 Data Descriptor Reference (DDR)

9.2,1 The DDR is the name of an object writien previously in the same logical file. This
data descriptor object contains information describing the format of the indirecily
formatted data part of the IFLR. The data descriptor may reference other objects that
include information about the format of the IFLR.

9.2.2 Any number of IFLRs in a logical file may have the same DDR. The sequence of
all IFLRs in a logical file having the same DDR is called an IFLR type. There may be any
number of IFLR types in a logical file, and there is no restriction on the order in which
individual records are written. IFLRs and EFLRs may be interspersed, and records from
one IFLR type may be interspersed with records of another IFLR type. The length of an
unmodified IFLR depends only on the rules expressed by its data descriptor, and different
records in the same IFLR type need not have the same length unless so constrained by the
data descriptor.

Being writable in any order means there are no restrictions about writing
EFLRs between IFLRs and vice-versa or about mixing IFLRAs from different
IFLR types. However, the relative sequence of records in an IFLR lype typically
is important and may be reflected by the required behavior of various index
fields. Some descriptors may define an implicit index based on position. For
example, the records of an IFLR type may represent data values on a grid.
Which point of the grid is evaluated for a given record might be computed as

a function of the record’s sequential position in the IFLR type.

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

API RPxbLL b EE 0732290 0556402 L34 WA

EXPLORATION AND PRODUCTION DATA DIGITAL INTERCHANGE, PART 2: LOGICAL FORMAT

2-23

. 9.3 IFLR Modifier

9.3.1 The modifier of an IFLR may be used to modify its use as described in Table 2-11.
Table 2-11 — IFLR Moadifier Options

Value Description

0 The IFLR is unmodified and is used as described in 9.2,

3 The IFLR is used as an end of data marker for an IFLR type. An end of data marker
has only 2 DDR and modifier and no data. An end of data marker indicates the end of
an IFLR type. That is, no unmodified IFLRs shail follow an end of data marker having
the same DDR. Using an end of data marker is optional for an IFLR type, When used,
any number of thein may be written.

2-255 Reserved,

The predecessor of end of data marker in APl Racommended Practice 66,
Version 1, is the type 127 EOD record. The purpose of an end of data marker is
to inform the reader when no more IFLRSs of a given type will be seen. This
allows the reader to stop looking for the "next” such IFLR, which may be very
costly if a large amount of other data remains in the logical file.

If the reader employs random access methods to skip over records when
seeking an IFLR having a specified value or index, there is a chance its end of
data marker may also be skipped. By writing end of data markers redundantly
every so often, if one is missed another may be found before the reader has
gone very far.

10 Logical File

. 10.1 Overview

10.1.1 A logical file is a sequence of logical records that represent a coherent dataset. Its
purpose is to support the recording of a wide variety of kinds of data and to provide a
context within which its data can be identified. Because it is composed of logical records,
a logical file may be very small or arbitrarily large, and is not limited by its storage
medium. It is possible to pack many logical files sequentially onto a single physical
storage unit (sec Part 3) or to span a logical file across two or more storage units.

Care is taken in this document to distinguish the term “logicat file" from the term
“file”. The latter typically refers to a physical file on disk and sometimes to the
dala on a tape delimited by two tape marks. On traditional magnetic tapes
fogical files are typically also physical files, although there will be at least one
physical file, namely the storage unit label, that is not a logical file. A disk file,
on the other hand, may contain one or more logical files and will always have a
storage unit label. Users may choose how to organize data, and on disk the
choice may be to have one logical file per disk file.

Although puiting the word “logical” in front of “file” all the time may seem
awkward, the distinction is important.

See Figure 2-1 for how logical files are related to fogical and visible records.

10.1.2 The complete description of logical files and the rules that govern them is
distributed among Parts 1, 2, 3, and 6 of this document. This part provides information
only on how logical files are related to the logical format layer of API Recommended
Practice 66.

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

2-24

API RPxbb 9 HE 0732290 055kL803 574 MM

AP| RECOMMENDED PRACTICE 66, V2

Most of the rules about a logical file concern its content, which is describad in
detail in Part 6. The rules discussed here periaining to the logical format layer
are relatively minimal.

10.2 Logical File Organization

10.2.1 The beginning of a logical file is determined from the content of its first logical
record, which must be an EFLR. The specific object type of the set it contains is described
in Part 6. Otherwise, a logical file consists of a sequence of arbitrarily many logical
records until another logical file is encountered or until the sequence of logical records is
exhausted.

10.2.2 Every logical record segment in a visible record must belong to the same logical
file. It follows that the first logical record of a logical file begins a new visible record.

There are several reasons for this rule. One is that the inclusion of file
sequence and file section numbers in the visible record headsr requires that all
segments belong to the same logical file. Another is that it makes it possible to
focate the beginning of a logical file efficiently, since only the first sagment in
each visible record neads to be examined. A third reason is the compatibility
with traditional tape formals that is achieved by mapping visible records one-to-
one onto tape blocks and then using tape marks to indicate blocks at which
logical files bagin.

11 Representation Code Descriptions
11.1 Introduction

Representation codes are summarized in Table 2-12. Bit-level descriptions of encodings
for simple representation codes are given in 11.3. Subfield-level descriptions of compound
representation codes are given in Table 2-13,

11.2 Representation Code Summary

Table 2-12 summarizes the representation codes defined for use under AP1 Recom-
mended Practice 66, ordered by code number. Under the Type column, S indicates a
simple representation and C indicates a compound representation.

—

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

API RPxbb 9b EE 0732290 0556404 400 N

EXPLORATION AND PRODUCTION DATA DIGITAL INTERCHANGE, PART 2: LOGICAL FORMAT

2-25

Table 2-12 — Representation Code Summary

Code Symbolic Description Class Type Sl;’;t’;:
| FSHORT Low precision floating point NUMBER S 2
2 FSINGL IEEE single precision floating point NUMBER S 4

FSING! Validated single precision floating point BALANCED- C 8
INTERVAL

4 FSING2 Two-way validated single precision floating point UNBALANCED- C 12
INTERVAL

5 ISINGL IBM single precision floating point NUMBER s 4

6 VSINGL VA X single precision floating point NUMBER S 4

7 FDOUBL IEEE double precision floating point NUMBER S 8

8 FDOUB i Validated double precision floating point BALANCED- C 16
INTERVAL

9 FDOUB2 2-way validated double precision floating point UNBALANCED- C 24
INTERVAL

10 CSINGL Single precision complex COMPLEX C 8

B CDOUBL Double precision complex COMPLEX c 16

12 SSHORT Short signed integer NUMBER s 1

13 SNORM Normal signed integer NUMBER S 2

14 SLONG Long signed integer NUMBER S 4

15 USHORT Short unsigned integer NUMBER 5 |

16 UNORM Normal unsigned integer NUMBER 5 2

17 ULONG Long unsigned integer NUMBER S 4

. 18 UVARI Variable-length unsigned integer MNUMBER S 1,2, 0r4

19 {DENT Variable-length identifier STRING s v

20 ASCII Variable-length ASCII character string STRING N v

21 DTIME Date and time TIME C]

22 ORIGIN Origin reference ORIGIN S v

23 OBNAME Object name REFERENCE C \'%

24 CBIJREF Object reference REFERENCE C v

25 ATTREF Attribute reference ATTRIBUTE C A4

26 STATUS Boolean status STATUS S 1

27 UNITS Units expression UNIT S v

28 RNORM Rational RATIO C 4

29 RLONG Long rational RATIO C 8

30 [SNORM Inverted order normal signed integer NUMBER 8 2

3 ISLONG Inverted order long signed integer NUMBER 8 4

32 IUNORM Inverted order normal wnsigned integer MNUMBER 5 2

33 IULONG Inverted order long unsigned integer NUMBER s 4

34 IRNORM Inverted order rational RATIO S 4

35 IRLONG Inverted order long raticnal RATIO S 8

36 TIDENT Tagged IDENT TAG-STRING C v

37 TUNORM Tagged UNORM TAG-NUMBER C 3, 4,0rb6

38 TASCHl Tagged ASCII TAG-STRING C \Y

39 LOGICL Logical STATUS S I

40 BINARY Binary BINARY s v

41 FRATIO Floating point ratio RATIO C 8

. 42 DRATIO Double precision ratio RATIO [16

COPYRI GHT 2000 Anerican PetroleumlInstitute

I nformati on Handl i ng Servi ces,

2000

API RPxbb 96 EM 0732290 055kR405 347 W

2-26 APl RECOMMENDED PRACTICE 66, V2

11.3 Descriptions of Simple Representation Codes

Simple representation codes are described here in terms of their bit-fevel structures. With
each description, the null value and one or more examples are provided. Bits are labelled 1 to
8, where bit 1 represents the low-order bit of the byte, and bit 8 represents the high-order bit,

The bit-labeling convention here is the opposite of the convention used in API
Recommended Practice 66, Viersion 1. The change was made in order to match
the conventions used by cited standards.

11.3.1 ASCIH

A variable-length character string consisting of N characters from the 7-bit ASCI (ANSI
X3.4) or the ISO 8859-1 character sets, preceded by the number N represented as a UVARI The
number N may be any value representable as a UVARI. If a null character (0) is present, then only
those characters that precede the first null are considered to be part of the actual string value.

Byte ltok (k+1) to (k+N)
Field N (UVARD 7-bit ASCH or ISO 8859-1 characters

Null value (N =0)
= 000000002
Sample value ‘$/ £’
= 00000101 00100100 00100000 00101111 00100000 1100011,
5 $ (sp) / (sp) £
Note that ASCIl and 1SO 8859-1 characters are the same where both sets
overlap. This is typically called the GO graphic character set. ASCH includes

control characters that are not part of 8859-1, and 8859-1 includes a G1
graphic character set using bit 8 that is not part of ASCII.

The use of a null characler as a string delimiter allows transparent string
padding, i.e., writing more characters than are in the actual string data. This
makes it possible to write variable-length string data in fixed-length fields (e.g.,
in frames) while praserving the extent of the actual string value.

11.3.2 BINARY

A variable-length bit string. The bits are written in N — | bytes {(when N > 1), starting at
bit 8 of the first byte. The last byte contains P < 8 trailing pad bits that are not part of the
bit string. The number of pad bits, P, is recorded immediately preceding the first bit string
byte. The total number of bytes N used to record P and the bit string is recorded immedi-
ately preceding P. The value N = 0 corresponds to the null bit string (no bits), in which
case the byte containing P is omitted. The value N = 1 is invalid, since it would represent
an alternate null value. The total number of bits in the bit string is:

#bits =8*(N-1)~P, when N> 1.

Since P < 8, a bit string is written in the minimum number of bytes.

Byte ltok k+1 (k+2) to (k+N)
Field N (UVARI) P (USHORT) Bit string, left justified

Null value (no bits)

= 00000000,
Sample value 0011101011011011001 .

= 00000100 00000101 00111010 11011011 00100000,
4 5 bit string

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

API RPxbbk 9 ER 0732290 055bL&0k 283 ER

EXPLORATION AND PRODUCTION DATA DIGITAL INTERCHANGE, PART 2: LOGICAL FORMAT 2-27

. 11.3.3 FDOUBL

Double precision floating point format as defined in ANSI Document STD 754-71985:
IEEE Standard for Binary Floating Point Arithmetic,

Byte 1 2

Bt [8 7 6 5 4 3 2 1|8 7 6 s 4 3 2 1
Meaning | ~' [210 2% 98 97 98 95 94 3 92 T [0 T T pF o3
Field | S E | M

Byte 3 4

Bie | 8 7 6 5 4 3 2 1|8 7 6 5 4 3 2 1

Meaning | 2° 2° 27 28 29 2710 21 1T 513 51 515 56 57 218 519 520
Field M (cont}
Byte 5 6
Bit 8 7 6 5 4 3 2 1 8 7 6 5 4 3 2 1
Meaning 2—2! 2—22 2—23 2—24 2—25 2—26 2—27 2—23 2—29 2—30 2—3] 2—32 2—33 2—34 2—35 5

Field M (cont)
Byte 7 8
Bit 8 7 (] 5 4 3 2 1 8 7 6 5 4 3 2 1
Mcaning 2—37 2—38 2—39 2—40 2-4] 2—42 2—43 2—44 2—45 2—46 2—47 2——48 2—49 2—50 2—51 2—52
Field M (cont)
. Value
= {(-1)8 * (1 + M) * 2B71023 5 . B <« 2047 [normalized]

= (-1)s * M * 271022 g _ g, Mz 0 [denormalized]

= (-1)s * 0, E=0, M =190

= (-1)8 * =, E = 2047, M = 0

= NaN (Not a Number), E = 2047, M £ 0
Null value 0

= 00000000 00000000 00QO0O000 CGODOO00O

00000000 00000000 00000000 00000000,
Sample value 153

= 2315 = (1 + .144g) * 21030-1023

= 01000000 01100011 00100000 0GO000O0O0

00000000 00000000 Q0CO0000 00O000000,
Sample value -153

= 2315 = —(1 + .1445) = 21020-1023

= 11000000 01100011 00100000 00000000

00000000 00000000 00000000 00000000,

11.3.4 FSHORT

2’s complement 12-bit fractional mantissa with 4-bit unsigned integer exponent.

Byte 1 2
. Bi |8 7 6 5 4 3 2 1|8 7 6 5 4 3 2 1
Meaning [=" 271 272 273 274 2% 6 277 98 9% 9710 o-lI] 33 52 ol 50
Field M E

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

API RPxbb 9b HE 0732290 0556807 11T IN

2-28 APl RECOMMENDED PRACTICE 66, V2

Value
=M * 2F
Null valve 0
= 00000000 00000000,
Sample value 153
231g = .4625 * 2%
01001100 10001000,
Sample value —153
= -231g = (-1 + .3164)
= 10110011 10001000,

* 28

11.3.5 - FSINGL
Single precision floating point format as defined in ANSI Document STD 754-1985:

IEEE Standard for Binary Floating Point Arithmetic.

Byte 1 2
Bit g 7 6 5 4 3 2 1 8 7 6 5 4 3 2 1
Meaning | ' | 27 26 28 2¢ 28 22 2 20 |20 27 2 24 2% 26 o7
Field S E M
Byte 3 4
Bit 8 7 6 5 4 3 2 1 8 7 6 5 4 3 2 1
Meaning | 28 20 210 211 212 513 518 513 3-16 5717 5718 519 520 521 522 523
Field M (cont) .
Value
= (-1)% * (1 + M) * 2B°127 0 < E < 255 (normalized]
(-1)5 » M * 27126, g = 0, M # 0 [denormalized]
= (-1)¥5 * 0, E=0, M=0
{-1)5 * e, E = 255, M = 0
= NaN {(Not a Number), E = 255, M = 0
Null value O

= 00000000 00000000 00000000 00000000,
Sample value 153

= 231g = (1 + .1445) * 21347127

= 01000011 00011001 00000000 00000000,
Sample value —153

= -231g = —(1 + .1444)

= 11000011 00011C01 00000000 00000000,

+ p134-127

11.3.6 IDENT

A variable-length character string consisting of N characters from a subset of the 7-bit
ASCII character set, immediately preceded by the number N represented as a USHORT.
The number N may be any value representable as a USHORT. The valid character subset
consists of null (0) plus the codes 33,4 (1) t0 96,5 C) and from 1234 ({) to 126, (~) inclu-
sive. This excludes all control characters, all “white space”, and the lower-case alphabet.
Two IDENT values match if and only if they have the same number of characters and the
corresponding characters match, If a null character (0) is present, then only those charac-
ters that precede the first null are considered to be part of the actual string value,

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

API RPxbb 9b EM 0732290 055b804 05L HH

EXPLORATION AND PRODUCTION DATA DIGITAL INTERCHANGE, PART 2: LOGICAL FORMAT

The purpose for IDENT is primarily for labels and other identifiers that undergo

maltching. Restriction to upper case allows implementations to avoid case
conversion prior to matching. Exclusion of white space helps prevent visual

ambiguity

The use of a null character as a string delimiter allows transparent string
padding, i.e., writing more characters than are in the actual string data. This

makes it possible to write variable-length string data in fixed-length fields (e.g.,

in frames) while preserving the extent of the actual string value.

1.3.7

Byte 1 2to(i+N)
Field | N (USHORT) 7-bit ASCII characters
Null value (N =0)
= 00000000,

Sample value ‘TYPEL’

= 00000101 01010100 01011001 01010000 01000101 00110001,

5 T Y P E

ISINGL

1

Single precision floating point format represented as a 24-bit fractional mantissa with a
leading sign bit and a 7-bit excess 64 integer exponent, base 16. Bits 85 of byte 2 may not
be all zero except for true zero.

Byte 1 2
Bit | 8 7 6 5 4 3 2 1 8 7 6 5 4 3 2 1
. Meaning | ' [26 25 2% 23 22 al 20 fo2t 222 273 2% 95 6 7 28
Field | S E M
Byte 3 4
Bit | 8 7 6 5 4 3 2 1 8 7 6 5 4 3 2 1
Meaning | 20 210 211 212 213 5-14 o1 216 =17 918 =19 520 521 n-22 »-23 24
Field M (conl)
Value
= (-1)% * (1 + M) * 16574
= 0 (true zero}, S = E =M = 0
Null value 0

11.3.8
Derived from SLONG by inverting byte order (1 23 4)to (432 1).

= 00000000 00000000 00000000 00000000,
Sample value 153

= 231y = .4625 * 16567%4

= 01000010 10011001 00000000 00000000,
Sample value —153

= -231g = —.462y * 1656784
11000010 10011001 00000000 00000000,

ISLONG

COPYRI GHT 2000 Anerican PetroleumlInstitute

I nformati on Handl i ng

Servi ces, 2000

API RPxbb 9b EM 0732290 0556809 T92 EA

2-30 APl RECOMMENDED PRACTICE 66, V2

Bytc 4 3
Bit 8 7 6 5 4 3 2 1 8 7 6 5 4 3 2 1
Meaning —23 1 230 229 228 227 226 225 224 223 222 22 1 220 2 19) 18) 17 2 16
Field I
Byte 2 1
Bit 8 7 6 5 4 3 2 1 8 7 6 5 4 3 2 1
Field I (cont)

Value

=1
Null value 0

= 00000000 00000000 00000000 00000000,
Sample value 153

= 231,

= 10011001 00000000 00000000 00000000,
Sample value —153
-2315 = {-2°1 + 2314)
01100121 11111111 111111211 11111113,

11.3.9 ISNORM
Derived from SNORM by inverting byte order (1 2) to (2 1).

Byte 2 1
Bit 8 7 6 5 4 3 2 | 8 7 6 5 4 3 2 1
Meaning _2I5 2l4 2|3 2|2 2| 1 2|0 29 28 27 26 25 24 23 22 21 20
Field I
Value
= I
Null value O

= 00000000 00000000,
Sample value 153

= 2314

= 10011001 00000000,
Sample value -153

= -231g = (-2'5 + 231y

= 01100111 11111111,

11.3.10 IULONG
Derived from ULONG by inverting byte order (1 234)to (432 1),

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

API RPxbb 9 @M 0732290 0556810 704 HE

EXPLORATION AND PRODUCTION DATA DIGITAL INTERCHANGE, PART 2: LOGICAL FORMAT

2-31

Byte 4
Bit 8 7 6 5 4 3 2 1 8 7 6 5 4 3 2 1
Meaning 23I 230 229 228 227 226 225 224 223 222 22I 220 2I9 2l8 2!7 2[6
Field I
Byte 2
Bit 8 7 6 5 4 3 2 1 8 7 6 5 4 3 2 |
Meaning 2I5 2I4 2I3 2I2 2Il 2[0 29 28 27 26 25 24 23 22 21 20
Field I (cont)
Value
=1
Null value O
= 00000000 00000000 00000000 00000000,
Sample value 153
= 2314
= 10011001 00000000 00000000 00000000,
11.3.11 IUNORM
Derived from UNORM by inverting byte order (1 2) to (2 1).
Byte 2
. Bit B 7 6 5 4 3 2 I 8 7 6 5 4 3 2 1
Meaning 2 15 2 14 2|3 2|2 2| 1 2|0 29 28 27 26 25 24 23 22 21 20
Field 1
Value
= I
Null value O
= 00000000 00000000,
Sample value 153
= 2314
= 10011001 00000000,
11.3.12 LOGICL
A three-state boolean,
Byte 1
Field S (SSHORT)
Value
= TRUE = ALLOWED = ON, if 8 = 1
= FALSE = DISALLOWED = OFF, if 5 = 0
= UNKNOWN, if S = -1
Null value FALSE
. = 00000000,

COPYRI GHT 2000 Anerican PetroleumlInstitute

I nformati on Handl i ng Servi ces,

2000

API RPxbb 9t EN 0732290 055bL81) b40 W

2-32 AP| RECOMMENDED PRACTICE 66, V2

11.3.13 ORIGIN

The representation of an origin (reference) is equivalent to UVARI. The value is an inte-
ger that maiches the origin subfield of the object name of an ORIGIN object (see Part 6) in
the same logical file.

The representation code acls as a tag to identify values that may need origin
transiation when data is merged (see Table 2-4).

Byte 1-k
Field O (UVARI)
Value
= 0
Null value 0
= 00000000,

11.3.14 SLONG

Two’s complement four-byte integer.

Byte 1 2
Bit | 8 7 G 5 4 3 2 1 8 7 6 5 4 3 2 1
Meaning 331 230 39 228 921 536 25 224 923 922 21 920 19 18 17 416
Field I
Byte 3 4
Bit | 8 7 6 5 4 3 2 1 8 7 6 5 4 3 2 1
Meaning 2]5 2]4 2[3 2[2 2” zlﬂ 29 28 27 26 25 24 23 22 2| 20
Field I (cont)
Value
=1
Null value 0
= 00000000 00Q00000 00000000 00000000,
Sample value 153
= 231,
= 00000000 0OCGODCOOO0 0OQO0000 10011001,
Sample value -153
= -231, = (=231 + 231y)
= 113111311 311111131 111131111 01100111,
11.3.15 SNORM
2’s complement two-byte integer.
Byte 1 2
Bit | 8 7 6 5 4 3 2 1 8 7 6 5 4 3 2 1
Meaning _2l5 214 2I3 2]2 2II 2]0 29 28 27 26 25 24 23 22 2I 20

Field I

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

API RPxbb 95 EE 0732290 055bL812 587 I

EXPLORATION AND PRODUCTION DATA DIGITAL INTERCHANGE, PART 2: LOGICAL FORMAT

. Value

=T
Nult value 0

= 00000000 00000000,
Sample value 153

= 2314

= 00000000 10011001,
Sample value ~153

= =231y = (-2%% + 775474)

= 11111111 01100111,

11.3.16 SSHORT

2’s complement one-byte integer.

Byte 1
Bit |8 7 6 5 4 3 2 1
Meaning | 27 26 25 2% 23 22 2l 20
Field I

Value
= 1

Null value 0

. = 00000000,

Sample value 89
= 131,
= 01011001,

Sample value -89
= -131g = (-27 + 474
= 10100111,

11.3.17 STATUS
A two-state boolean.

Byte 1
Field S (SSHORT)
Value

= TRUE = ALLOWED = ON, if 8 = 1

= FALSE = DISALLOWED = OFF, if 8§ = 0
Null value FALSE

= 00000000,

11.3.18 ULONG
Unsigned four-byte integer.

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

API RPxbLbL Sb BM 0732290 0556413 413 BN

2-34 APl FIECOWENDED PRACTICE 66, V2

Byte 1 2

Bit | 8 7 6 5 4 3 2 1 g8 7 &6 5 4 3 2 1
T 230 329 538 31 28 525 524 I3 22 Il 230 ,l9 I8 17 5l6

Meaning
Field I
Byte 3 4

Bit | 8 7 6 5 4 3 2 1 8 7 6 5 4 3 2 1

Meaning o3 2]4 2!3 2I2 2I i 2l0 29 28 27 26 23 24 23 22 5l 50

Field I (cont)

Value
=1
Null value O
= 00000000 00000000 00000000 00000000,
Sample value 153
= 2314
00000000 00000000 00000000 10011001,

11.3.18 UNITS

This representation is identical to ASCIL It is used to contain a character string repre-
senting a unit of measure. When used in the unit characteristic of an atiribute, the unit
model under which the unit is defined is identified in the ORIGIN object referenced by the .

attribute’s object (see Part 6). If the attribute is in a template, the unit model is identified in
the ORIGIN object referenced by the set type in the set component. When used in other
values, the mechanism for locating the ORIGIN that identifies the unit model must be
specified as part of the definition of the data item to which the value belongs.

11.3.20 UNORM

Unsigned two-byte integer.

Byte 1 2
Bit 8 7 6 5 4 3 2 1 8 7 6 5 4 3 2 1
Meaning | 2 15 2]4 2l3 2!2 21l 2I0 29 28 27 26 23 74 23 a2 21 20
Field I

Value

= I
Null value O

= 00000000 00000000,
Sample value 153

= 2314

= 00000000 10011001,

11.3.21 USHORT

Unsigned one-byte integer. .

Byte 1
Bit | 8 7 6 5 4 3 2 I

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

API RPxbb St M 0732290 0556814 35T WM

EXPLORATION AND PRODUCTION DATA DIGITAL INTERCHANGE, PART 2: LOGICAL FORMAT

2-36

Meaning | 27 26 2* 24

23

22

2[

2

Field I

Value
= I
Null value ¢
= 00000000,
Sample value 217
= 3314
= 11011001,

11.3.22 UVARI

An unsigned binary integer in the range 0 — %- 1) can be represented by means of |,
2, or 4 bytes using this representation code. Bits 8 and 7 of byte 1 indicate the number of
bytes used to represent the value. A one-byte representation is indicated when bit 8 = 0. A
two-byte representation is indicated when bit 8 = 1 and bit 7 = 0. A four-byle representa-

tion is indicated when bit8 =bit 7= 1.

Byte 1
Bit 8 7 6 5 4 3 2 1
Meaning | 0 | 26 2% 24 23 22 ol 20
Field I
Value
= I
Range
=0 to (27 - 1)
Byte 1 2
Bit 8 7 6 5 4 3 2 1 8 7 6 5 4 3 2 1
Meaning | 1 0 [207 212 21l 210 29 98 57 96 o5 24 33 52 o 40
Field
Value
= I
Range
= 27 to (2™ - 1)
Byte 1 2
Bit 8 7 6 5 4 3 2 1 8 7 6 5 4 3 2 1
Meaning 1 1 229 228 227 226 225 224 2'23 222 221 220 2|9 218 2[7 216
Field
Byte 3 4
Bit 8 7 6 5 4 3 2 1 8 7 6 5 4 3 2 1
Meanine 2|5 2|4 2|3 2!2 2|| 2|0 29 28 27 26 25 24 23 22 2] 20
Field I (conrt)

COPYRI GHT 2000 Anerican PetroleumlInstitute

I nformati on Handl i ng Servi ces,

2000

API RPx*bbk 95 HE 0732290 0556315 296 1N

2-36 APl RECOMMENDED PRACTICE 66, V2

Value
=1
Range
= 2M o (2% - 1)

11.3.23 VSINGL

This representation comresponds to the VAX F-floating format, with bytes ordered
according to increasing internal address. That is, when loaded in memory byte 1 goes into
address A, byte 2 into address A+1, byte 3 into A+2, and byte 4 into A+3. As usual, when
written in API Recommended Practice 66 format, byte 1 is written first, followed in order
by bytes 2, 3, and 4.

Caution: Note the unusual byte ordering in this diagram.

Byte 2 1

Bic | 8 7 6 5 4 3 2 1|8 7 6 5 4 3 2 1
Meaning | ~' | 27 26 28 24 23 22 2l 20|22 23 2% 25 26 27 28

Field | S E M

Byte 4 3

Bit | 8 7 6 5 4 3 2 1|8 7 6 5 4 3 2 |1
Meaning 2—9 2-—!0 2—1I 2—[2 2——[3 2—[4 2—]5 2—]6 2—!7 2—!8 2—19 2—20 2—2I 2—22 2—23 2—-24

Field M (cont)

Value .

= (-1)% *» (0.5 + M} *» 25128 E 5 0

=0, E=0, =20, M = arbitrary

= undefined and invalid for E = 0, § = 1
Null value 0

= 00000000 Q0GO0O00Q00 00000000 00000000,
Sample value 153

= 2315 = (0.5 + .062g) * 2136-328

= 00001100 01000100 00000000 10000000,
Sample value —153

= -2315 = -(0.5 + .062g) * 21367128

= 00001100 1100010Q 00000000 10000000,

11.4 Descriptions of Compound Representation Codes

Table 2-13 describes compound representation codes in terms of their subfields. This
table completely describes the syntactic structure of the corresponding representations in
terms of simple representation codes. Unless stated otherwise below, the null value of a
compound representation code is obtained by using the nuil vatue for each of its subfields.
Examples and supplemental explanations for selected codes follow the table.

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

API RPxbb 9 EM 0732290 D55L31bk 122 HRM

EXPLORATION AND PRODUCTION DATA DIGITAL INTERCHANGE, PART 2: LOGICAL FORMAT

237

Table 2-13 — Compound Representation Code Descriptions

Symbolic pobeld Subfield Name Subfield Code Description
ATTREF | type IDENT Object type name
2 origin ORIGIN Origin containing schema code and identifier
namespace code
3 copy UVARI Copy number
4 identifier IDENT Object identifier
5 labet IGENT Autribute label
CDOUBL l real FDOUBL, Real part
2 imaginary FDOUBL Imaginary part
CSINGL 1 real FSINGL Real part
2 imaginary FSINGL Imaginary part
DRATIO 1 namerator FDOUBL Numerator of ratio
2 denominator FDOUBL Denominator of ratio (> 0)
DTIME | year USHORT Years since 1900
2 timezone 4-bit unsigned Time zone: O=local standard time, I=local daylight
inleger savings time, 2 = Universal Coordinated Time
(Greenwich Mean Time)
3 month 4-bil unsigned Month of the year (I to 12)
integer
4 day USHORT Day of the month (1 to 31)
5 hour USHORT Hours since midnight (0 10 23)
6 minute USHORT Minutes past the hour (0 to 59)
7 second USHORT Seconds past the minute (0 to 59)
8 millisecond UNORM Milliseconds past the second (0 to 999)
FDOUBI | value FDOUBL Nominal value ¥ of interval [V - B, V + B]
2 bound FDOUSL Interval bound, B (2 0)
. FDOUB2 | value FDOUBL Nominal value V of interval [V - A, V + B]
2 lower FROUBL Interval lower bound, A (2 0)
3 upper FDOUBL Interval upper bound, B (2 0}
FRATIO 1 numerator FSINGL. Numerator of ratio
2 denominator FSINGL Denominator of ratio (> 0)
FSINGI i value FSINGL Nominal value ¥ of interval [V - B,V + B]
2 bound FSINGL Interval bound, B (2 0)
FSING2 1 value FSINGL Nominal value V of interval [V - A, V + B]
2 lower FSINGL Interval lower bound, A (2 0)
3 upper FSINGL Interval upper bound, B (2 O
IRLONG | numerator ISLONG Numerator of ratio
2 denominator IULONG Denominator of ratio (> 0)
IRNORM § numerator ISNORM Numerator of ratio
2 denominator IUNORM Denominator of ratio (> 0)
OBJREF i type IDENT Object type name
2 origin ORIGIN Origin containing schema code and identifier
namespace code
3 copy UVARI Copy number
4 identifier {DENT Object identifier
OBNAME | origin ORIGIN Origin containing identifier namespace code
2 copy UVARI Copy number
3 identifier IDENT Object identifier
RLONG | numerator SLONG Numerator of ratio
2 denominator ULONG Denominator of ratio {>0)
RENORM] numerator SNORM Numerator of ratio
2 denominator UNORM Denominator of ratio (> 0)
TASCH 1 tag ORIGIN Origin reference
2 siring ASCH Character string value
. TIDENT I tag ORIGIN Origin reference
2 identifier IDENT Identifier
TUNORM 1 tag ORIGIN Origin reference
2 value UNORM An unsigned integer value

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handl i ng Servi ces,

2000

2-38

API RPxbbt 9t EB 0732290 0556417 069 I

AP| RECOMMENDED PRACTICE 66, V2

11.4.1 ATTREF

A value acts as a reference to an attribute in an object of the given object type. The
object need not be present in the same logical file. However, the ORIGIN objects refer-
enced by the tag and origin subfields must be present.

The copy number sublfield, which was USHORT in APf Recommended Practice
66, Version 1, is now UVARI.

11.4.2 DTIME

Null value midnight, January 1, 1900, local standard time
= 00000000 00000001 00000001 00000000
00000000 00000000 00000000 00000000,

11.4.3 FDOUB1

This is the representation of a balanced interval having its midpoint as a nominal value.
The assignment of meaning to the interval is delegated to the producer.

11.4.4 FDOUB2

This is the representation of an unbalanced interval having a nominal double precision
value. The interval is unbalanced because the nominal value may not be its midpoint.

11.4.5 FSING1

This is the representation of a balanced interval having its midpoint as a nominal single
precision value. The assighment of meaning to the interval is delegated to the producer.

11.4.6 FSING2

This is the representation of an unbalanced interval having a nominal single precision
value. The interval is unbalanced because the nominal value may not be its midpoint.

11.4.7 OBJREF

A value acts as a reference to an object having a given type. The object need not be
present in the same logical file. However, the ORIGIN objects referenced by the origin
subfield must be present.

The copy number subfield, which was USHORT in APl Recommended Practice
66, Version 1, is now UVARI.

11.4.8 OBNAME

A value acts as a reference to an object. The object need not be present in the same log-
ical file. However, the ORIGIN object referenced by the origin subfield must be present.

The copy number subfield, which was USHORT in APl Recommended Practice
66, Version 1, is now UVARIL.

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

API RPxhb 9bL W 0732290 055L818 TTS W

EXPLORATION AND PRODUCTION DATA DIGITAL INTERCHANGE, PART 2: LOGICAL FORMAT 2-38

. 11.4.9 TASCI

The tag subfield references an ORIGIN object in the same logical file. The use of this
ORIGIN may differ from value to value and must be specified when the entity (e.g.,
attribute) is defined.

11.4.10 TIDENT

The tag subfield references an ORIGIN object in the same logical file. The use of this
ORIGIN may differ from value to value and must be specified when the entity (e.g., object
type, attribute, etc.) is defined.
11.4.11 TUNORM

The tag subfield references an ORIGIN object in the same logical file. The use of this
ORIGIN may differ from value to value and must be specified when the entity is defined.

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

API RPxbb 9 EE D732290 0556419 931 WA

Recommended Practices for
Exploration and Production Data
Digital Interchange

Part 3: Physical Bindings

Exploration and Production Department

. API RECOMMENDED PRACTICE 66, V2
SECOND EDITION, JUNE 1996

American
. L Petroleum

Institute

—

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

API RPxbb 9L W 0732290 055L&20 L53 W

. CONTENTS

Page
0 INTRODUCTION ...oooiiiiiiieeeccvree e sessesats seeessseseeeeeeeasesssesstossare sosssmseseneeseess s e 31
I SCIOPE ... r s et b ssnee et s seseesre s absses st e o er e mevm e sessenns e et sen 341
2 DEFINITIONS ottt re e eearse e e varesesetaseensos s ee s seseeeeesee s s e 3-1
3 CONCEPTS ...ttt bere s sr s isaesr e s e e e s st et st s ee e smees s esoe et see s ssmen emeseeeees 3-2
4 STORAGE UNIT TERMINOLOGY AND REQUIREMENTScovvooeeeeeevsisens 33
4.1 ACCESS METHOUS .ocovieieeccir st s istissastemeesseeessessmsesseeesenesan ferericnerersnare 3.3
4.2 COMBIIL .o cerr e e tre st s nee e srse e s et sm e smmese e s e et e e smmeemmeemsronesaen 34
4.3 End of Storage Unit INAICAIOToovmiiiiviciciiieces e e e e s atassanns 34
STORAGE SET TERMINOLOGY AND REQUIREMENTS ..oooooooreeceeseesnnns 34
6 STORAGE UNIT LABEL CONTENTSooeeeeeeeeevesseeseesssssensrsesssssesens 3-5
6.1 Storage Unit Sructire OPLONSocvviiiiiiiiiisiieeeerns e ressresesneessresssnessssrssmsssns 3-6
7 BINDING TO STANDARD MAGNETIC TAPESccorieirirsteesmrssreseressseosesssrons 3-6
7.1 Medium CharacteriStCS oot e e sescre st eseerteeeeeeeeemsssesae st s e seessesns 3-6
7.2 Binding REqUITETNENIScoieimrcececrenccrenee e cenenernssssasseneseere s teasas e senemsnns 3-7
8 BINDING TO RANDOM ACCESS FILESooeoeeeecveeeseneesesesesssssssesssssssssseesns 37
8.1 Medium ChAaracleTiStTS ..vuiiveeeirreiiirieinistiesten oo ceeerrersrasseasasssasssssnssosesenssen 3-7
. 8.2 Binding ReqQUIreMENIScocoomrrnrrrtrriisssisssaresesesessonsasss s soneseseseseses 3-7
9 BINDING TO PEER-TO-PEER COMMUNICATION STREAMS ..o 3-7
9.1 Medium CharaCleriSliCs ..o oeiiecirrie et e eeaeeeeeevssvess e sesee s sesessmses 3-7
Tables
3-1—Storage Unit Label Fields ...ttt e 35
3-2—>5torage Unit Structure OPtionscooeeivcnencnneininninien e s s 3.6

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

API RPxbb 9L ER 0732290 055k821 59T WA

Recommended Practice for Exploration and Production
Data Digital Interchange
Part 3: Physical Bindings

0 Introduction

0.1 This standard contains introductory, normative, and annotative information.
Introductory information comprises everything that precedes Section 1, Scope. The
introductory clauses describe how the publication is organized and provide commentary
on the history and purpose of this standard. Normative information includes the actual
requirements that must be satisfied by any data conforming to the standard. Annotative
information is provided as rationale for and illustrations about the normative information
and does not constitute part of the standard. The standard is completely stated even if all
introductory and annotative information are removed. Annotative information may refer to
terms introduced in later paragraphs or parts in order to tie together concepts, i.e., from
time to time its value may increase afier the reader has made a complete pass over the
standard.

0.2 Different styles are used to distinguish between normative and annotative
information.

0.3 All normative information is written using this same font, and is contained in either
numbered paragraphs or numbered tables. Normative text is aligned with the left margin
of the page.

0.4 All figures are annotative, and all annotative text is written in unnumbered
paragraphs in Helvetica italic font, indented, as shown here:

This is a paragraph of annotative text. lts purpose is to include informal
commentary on the normative information in immediately preceding or
following paragraphs and may include references o or usage of normative
information in other parts of the standard.

1 Scope

This part specifies physical bindings, which are descriptions of how an API Recom-
mended Practice 66 logical format is recorded on various physical media. It defines and
describes usage of terms such as storage set, storage unit, and storage unit label. A stan-
dard is defined only for the media specifically described in this part. Whenever a new
physical binding is specified, a new edition of this part shall be produced.

2 Definitions

2.1 format version: A two-byte field in the visible record header immediately
following the length field that identifies the API Recommended Practice 66 version of the
data in the record. The version is a one-byte unsigned integer, preceded by a byte
containing the value FF ¢,

2.2 logleal file: The main unit of data exchange. It consists of a sequence of one or
more logical records, beginning with a record containing a single FILE-HEADER object.

3-1

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

API RPxbb 6 HM 0732290 055kd4ce 42t IR

3-2 APl RECOMMENDED PRACTICE &6, V2

2.3 logical format: A description of how to encode data in a media-independent
sequence of 8-bit bytes. This is the view of API Recommended Practice 66 that is
independent of any physical binding.

2.4 logical file section: The part of a logical file contained in one storage unit,

2.5 logical record: An organization of data values into coherent, semantically-related
packets of information. A logical record may have any length greater than sixteen bytes
and is organized in one of two syntactic forms: explicitly-formatted logical record (EFLR)
or indirectly-formatted logical record (IFLR).

2,6 logical record segment: A construct that contains the structure necessary to
describe and support the physical implementation of a logical record. A logical record is
implemented as one or more logical record segments. A segment is wholly contained in a
visible record, but two segments of the same logical record may be in different visible
records.

2.7 organization code: A number assigned by API to an organization that identifies
the organization and represents schemas and dictionaries defined and administered by the
organization.

2.8 physical binding: A description of how API Recommended Practice 66 visible
records are recorded on a specific medium type.

2.9 physical format: The medium-specific organization of data bytes on a storage
unit. .

2.10 producer: The system or application program or company that recorded
information under API Recommended Practice 66.

2.11 record structure: A ficld in the storage unit label that specifies the nature of the
visible records in a storage unit. Current options are RECORD and FIXREC,

2.12 storage set: A set of one or more storage units on which a sequence of one or
more contiguous logical files is recorded.

2.13 storage unit: A medium-specific data container, e.g., a tape or file, that is
identifiable and manageable by people who use the medium and on which API
Recommended Practice 66 data is recorded.

2.14 visible record: The interface between the logical format and a medium-specific
physical format. A visible record has a header, a body, and a trailing length.

3 Concepts
3.1 This part uses terminology defined in Part 2,

3.2 The visible records that make up the API Recommended Practice 66 logical format

may be recorded on any number of media, such as magnetic tape, random access files,

communication I/O streams, and so forth. Each medium type has a basic storage unit that

is identifiable and manageable by people who use the medium. For standard magnetic tape

it is the tape cassette or tape reel. For random access files it is the file. For communication .
streams it is the communications session.

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

"

API RPxbb Sb EM 0732290 05564823 36

EXPLORATION AND PRODUCTION DATA DIGITAL INTERCHANGE, PART 3: PHYSICAL BINDINGS

The door is left open here on how medium fypes are identified. A partitionable
tape, for example, may be considered a distinct medium type from a standard
tape, alfowing storage units to be partitions on the tape rather than the whole
tape (o be determined). A database may be considered distinct from a random
access file, allowing a storage unit to be a database (and its visible records the
records of the databass). The key requirement is that a medium type be readily
identifiable by a person using an applicalion that reads AFI Recommended
Practice 66 data so that the type can be provided io the application before the
storage unit is opened by the application.

3.3 Almost always the capacity of a storage unit and the size of a logical file are
different. When the storage unit is larger, it is possible to record one or more logical files
on a single storage unil. When the logical file is larger, however, more than one storage
unit is needed. The one or more storage units a logical file intersects constitute part of a
storage set,

3.4 To identify a storage unit, including its position in a storage set, and to identify the
logical format edition of the data recorded in the storage unmit, a storage unit label is

recorded at the beginning of every storage unit. The storage unit label consists of fixed-
format textual information.

A storage set may consist of one storage unit or many storage units. It is
particutarly important to have a way to identify and sequentially order multiple
sltorage units spanned by a single logical file, and this is one of the purposes of
the storage unit label,

Another purpose is to provide human-readable information about the storage
unit that can be presented using common utifities having no knowledge of API
Recommended Practice 66.

3.5 Each common medium type is governed by industry standards designed to support
onc or a few specific application data access models that can be presented by the /O
subsystems of different computers. The descriptions of physical bindings provided in this
part are given in terms of the data access models rather than in terms of low-level physical
implemeniation details. For cach common medium type, a description of the selected data
access model is given, followed by a description of what a storage unit is and how visible
records and storage unit labels are recorded on storage units. A description of physical
binding requirements that are independent of any medium type is given in 4 and 5.

4 Storage Unit Terminology and Requirements

4.1 Access Methods

4.1.1 An access method is said to be block-oriented if each read operation returns a
block of bytes beginning at the current position on the medium, and the number of bytes in
the block is determined by information on the medium. The reader discovers how many
bytes have been read atier the read request. Correspondingly, each write operation writes a
single block of data. Variable-iength block access occurs when the writer may specify a
different number of bytes for each block. Fixed-length block access occurs when the
writer specifies a fixed block size once, and every block written has the same number of
bytes. Some medium standards predefine the size of the fixed block.

4.1.2 An access method is byte-oriented if each read operation returns the number of
bytes specified by the reader beginning al the current position on the medium.
Correspondingly, writers specify how many bytes to write for each write operation.

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

API RPxLL 96 EE 0732290 D55L424 279 WA

3-4 APl RECOMMENDED PRACTICE 66, V2

4.1.3 Some /O subsystems support multiple access methods for the same medium type. .
The intent of this standard is that the medium type of the storage unit shall uniquely

determine its physical binding. Consequently, only one physical binding per medium type

shall be specified here, and a physical binding must select exactly one access method,

4.2 Content

Of the data presented to an application by the I/O subsystem, the first data shall be a
storage unit label. For block-oriented access, the first block shall contain a storage unit
label at its beginning and shall not contain any visible records. Any data in the first block
following the storage unit label has no meaning and shall be ignored. The remaining data
consists of a sequence of one or more visible records. For block-oriented access, each
block coincides with one visible record. That is, if the block (as presented to the applica-
tion by the I/O subsystem) is n bytes long, 5o is the visible record. All visible records must
be complete except for the last, which may be incomplete. If incomplete, it shall be
assumed to be a failed attempt to write a complete visible record and may be ignored.

An incomplste visible record is detacted by the fact that its actual size is smaller
than the size declared in its header. An incomplete visible record may occur, for
example, because a transmission link falled while writing a record. This is

detectable by writers, and the failed visible record should be recorded in full on
the next storage unit in the storage set (e.g., in another session) if one is used,

On the other hand, actual size of a visible record may be different from the size
in its header due to media defects (i.e., the header is corrupted). If not at the
end of the storage unit, this is defectable as a media defect, and the application
must try to recover in the best way it can. If a media defect occurs at the end,

an ambiguous situation arises that the standard does not address. .

4.3 End of Storage Unit Indicator

A physical binding shall specify a mechanism to indicate no more visible records in the
storage unit.

For example, on standard magnetic tape the “no more visible records”
mechanism is a double tape mark.

5 Storage Set Terminology and Requirements
5.1 Additional storage set requirements are stated in 6.

5.2 A storage set shall contain one or more logical files and consist of one or more
storage units.

5.3 The first logical record segment in a storage set (i.e., in the first visible record of the
first storage unit) shall be the first segment of a logical file (see Part 2).

That Is, although a storage unit may begin in the middle of a logical file, a
storage set may not.

5.4 Alogical file may be contained in one or more storage units in a storage set. The part
of a logical file contained in a single storage unit is called a logical file section. The
storage units in a storage set are numbered sequentially (see Table 3-2). The sequential
order of logical file sections shall correspond to the sequential order of the storage units
containing them, .

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

API RPxbb 9k EM 0732290 055E825 135 WA

EXPLORATION AND PRODUCTION DATA DIGITAL INTERCHANGE, PART 3: PHYSICAL BINDINGS

That is, if section 1 starts in storage unit 3, then section 2 is in storage unit 4,
section 3 in storage unit 5, and so on. If two logical files have sections in the
sarne storage unit, then for one logical file it must be the last section and for the
other logical file it must be the first section.

Note there is no restriction on mixing medium types in a storage set. Although
most storage sets will consist of the same medium types (e.g., all standard

tapes or all disk files), it is legal to mix and maich, provided the rules on
structure hold.

6 Storage Unit Label Contents

The storage unit label consists of 128 byles encoded using characters of the ISO 8859-1
character set, Table 3-2 describes the fields of the storage unit label.

Table 3-1 — Storage Unit Label Fields

*Note Field Size in Bytes

t Storage unit sequence nuimber

2 APl Recommended Practice 66 version and 5

format edition
3 Storage unit structure 6
4 Binding edition 4
5 Maximum visible record length 10
] Producer organization code 10
7 Creation date 1
8 Serial npumber 12
9 reserved 6
10 Storage set identifier 60
*Notes:

I, Storage unit sequence number is an integer in the range | 1o 9999 that indicates the order in which the cur-
Tent storage unit occurs in a storage set. The firsy storage vnit of a storage set has sequence number 1, the second
2, and so on. This number is represented using the characters 0 to 9, right justified with leading blanks if needed
to fill out the field (no leading zeros). The rightmost character is in byte 4 of the label. A valid vaiue shall be
recorded.

2. AP! Recommended Practice 66 version and format edition consists of the three characters 'V2." representing
the current version of this standard, followed by the edition of the logical format (see Part 2) in the range 01 to
99. The logical format edition is represented using the characters 0 to 9, right justified with a leading zero for
numbers less than 10. The character V is in byte 5 of the label. All logical files in the storage unit adhere to API
Recommended Practice 66, Version 2 and to the same or earlier logical format edition, A valid value shall be
recorded.

3. Siorage unit structure is 2 name indicating the visible record structure of the storage unit. This name is left-
justified with trailing blanks if needed to fill out the field. The leftmost character is in byte 10 of the label. All
storage units in the same storage set shall have the same storage unit structuce. Options are listed in Table 3-2,
A valid vahie shall be recorded.

4, Binding edition is the character B in byte 16 of the label followed by a positive integer in the range | to 999
(no leading zeros), left justified with trailing blanks if needed to fill out the field. The integer value corresponds to
the edition of this part (Part 3) of the document that describes the physical binding of the logical format to the
storage unit. A valid vaiue shall be recorded,

5. Maximum visible record length is an integer in the range 0 to 4 294 967 294 (232-2) indicating the
maximum visible record length for the storage unit, or 0 {(zero) if undeclared. This number is represented using
the characters 0 to 9, right justified, with leading blanks if necessary to fill out the field (no leading zeros). The
rightmost character is byte 29 of the label. A valid value or O (zero) shall be recorded.

6. Producer organization code is an integer in the range 0 to 4 294 967 295 2¥-) indicating the organization
code (see Appendix A} of the storage unit producer. This number is represented using the characters 0 to 9, right
justified, with leading blanks if necessary to il out the field (no leading zeros). The rightmost character is byte
39 of the label. This ficld may be empty, i.e.. may contain all blanks, in which case no storage unit producer is
specified.

7. Creation date is the earliest date that any current information was recorded on the storage unit. The date is
represented in the form dd-MMM-yyyy, where yyyy is the year (e.g., 1994), MMM is the month (one of JAN,
FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP, OCT, NOV, DEC), and dd is the day of the month in the range 1
to 31, Days | to 9 have one leading blank, The separator is a hyphen (code 45)q). This ficld may be empty, ic.,
may contain all blanks, in which case no creation date is specified.

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

3-6

API RP*Lb 90 EH 0732290 UlSEEBEE 071 W

APl RECOMMENDED PRACTICE 66, V2

Table 3-1 — Storage Unit Label Fields (Continued)

8. Serial number is an ID used to distinguish the storage unit from other storage units in an archive of an
enterprise. The specification and management of serial numbers is delegated to organizations using this standard.
This field may be empty, i.€., may contain ali blanks, in which case no serial number is specified.

9. This field is reserved and should be recorded as all blanks (code 32,).

i0. Storage set identifier is a descriptive name for the storage set. Every storage unit in the same storage set shall
have the same value for the storage set identifier in its storage unit label. A value may have embedded blanks and
is non-blank if at least one character is different from blank (code 32,q). This field is intended 1o distinguish the
storage set from other storage sets, but is not required to be unique. A non-flank vatue shait be recorded.

The logical format edition Is recorded using the form 01, 02, etc., for consis-
tency with its AP Recommended Practice 66, Version 1 form. Otherwise, lead-
ing zeros in numeric values are generally avoided.

6.1 Storage Unit Structure Options
Although storage unit structure describes visible records, it is considered to be
a storage unit attribute (hence is in the storage unit label) since it describes a

feature of all visible records in the storage unit.

Table 3-2 describes the storage unit structure options currently defined.

Table 3-2 — Storage Unit Structure Options

*Note Field
i RECORD
2 FIXREC

*Nates:

. Visible records may be of variable length, ranging from the minimum length required to contain one logical
record segment 1o fength specified in the maximum visible record Iength field of the storage unit label (if not
zero), If the maximum visible record length specified is zero, then visible records may be of any length.

2. All visible records in the storage unit have the same length, namely that specified in the maximum visible
record length field of the storage unit label. Although all storage units in the same storage set must have a
FIXREC structure, the maximum visibie record length may be different in different storage units, When the
FIXREC option is used, then the maximum visible record length field shall not be 0 (zero).

7 Binding to Standard Magnetic Tapes

7.1 Medium Characteristics

7.1.1 A standard magnetic tape is a non-partitioned, block-oriented device that supports
variable-length blocks. It may be written in one of several different densities. Density is
detectable when reading but is not recorded in any data block. Consequently, the choice of
tape density is unrestricted.

7.1.2 A standard magnetic tape has two kinds of tape mark, an indelible marks and a
writable mark. There are two indelible tape marks, one called BOT (beginning of tape) and
one called ETW (end of tape warning). BOT is near the physical beginning of the tape and
indicates the start of the region in which recorded data is permitted. ETW is required to be
a minimum distance from the physical end of the tape and serves as a warning.

With many systems, ETW can be sensed only when writing.

7.1.3 A writable tape mark (called TM) is a distinct form of recorded information that
may be written or read by an application in place of a block. It contains no data.

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

API RPxbb 9b ER 0732290 055kLA27 TODA WM

EXPLORATION AND PRODUCTION DATA DIGITAL INTERCHANGE, PART 3: PHYSICAL BINDINGS

. 7.2 Binding Requirements

7.2.1 For standard magnelic tapes, a single tape reel or tape cassette constitutes one
storage unit.

7.22 On a standard magnetic tape there shall be a single TM following the BOT and
immediately preceding the storage unit label, which is recorded in the first data block.

7.2.3 Each visible record shall be written in one complete tape block and shall coincide
with the data of the block. A block shall have no bytes except those belonging to the
visible record.

7.2.4 There shall be at least two conseculive TMs immediately following the last visible
record on the storage unit, That is, two or more consecutive TMs constitute the end of
storage unit indicator. The double TM may occur either before or after ETW.

7.2.5 There shall be a single TM immediately preceding the first visible record of each
logical file.

The purpose of the TM before a logical file is to support fast hardware

positioning to logical files.

8 Binding to Random Access Files

8.1 Medium Characteristics

. 8.1.1 A random access file is a named entity for which random byle access is possible.
Bytes are ordered sequentially, and an application may position to any byte in the file by
specifying its position and then read or write n bytes. All the bytes presented to an
application by the I/O subsystem are data bytes. This view of a file corresponds to an
implementation of ANSI C 1/0 accessing the file in binary mode.

8.1.2 The maximum size of a file is implementation-dependent.

Most current implementations have a maximum file size of 2°2—1 bytes, the
largest integer expressible as a C unsigned long. To suppoit random access,

absolute byte posilion in the file must be representable using a native datatype
of the language.

8.2 Binding Requirements
8.2.1 A storage unit is a single complete file.
8.2.2 The first 128 bytes of a storage unit constitute a storage unit label.

8.2.3 The remaining bytes constitute a seguence of visible records. End of storage unit
is indicated when there are no more bytes to read from the file.

9 Binding to Peer-to-Peer Communication Streams

9.1 Medium Characteristics

9.1.1 A peer-to-peer communication stream is a FIFQ (first in first out) queue for which
sequential access to an ordered sequence of byles is possible. An application may either
write to the FIFO or read from the FIFO, but may not do both.

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

API RPxbb 9b EE 0732290 0556428 944 HH

3-8 AP RECOMMENDED PRACTICE 66, V2

An application using full duplex transmission facilities to read data from its
remote peer and write data back to the same remote peer is reading from one
FIFO and writing to a different FIFO over the same communications channel.

9.1.2 A stream is created by a communications session established between two
applications and ends when the session ends. A session is defined by the data exchange
occurring between the open and close operations provided by the communications protocol.

9.1.3 Binding Requirements

9.1.3.1 A storage unit consists of the stream of data bytes exchanged in one direction
between applications during one session.

9.1.3.2 The first 128 bytes of a storage unit constitute a storage unit label.

8.1.3.3 The remaining bytes constitute a sequence of visible records. End of storage
unit is indicated when there are no more bytes to read from the stream.

Some distinction should be made between ‘file-lass” transter of data in a peer-
to-peer exchange vs “remote file access” or “remole lape access” using
communication channels. In the lafter two cases, a communications session Is
established between a file or tape server on one end and an application on the
other end. The dala access services from the server should appear the same
as reading a local file or a local tape. Consequently, the remole storage unit
should look like ohe or more files or ohe or more tapes. This mode allows
multiple storage units in one session, for example.

However, a true peer-to-peer communications binding wifl present only one
storage unit.

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

API RPxbb 95 WM D732290 055L429 480 WA

Recommended Practices for
Exploration and Production Data
Digital Interchange

Part 4: The API-SI Unit Model

Exploration and Production Department

. APl RECOMMENDED PRACTICE 66, V2
SECOND EDITION, JUNE 1996

American
. L) Petroleum

Institute

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

API RPxbb 9t EM 0732290 055LA430 572 WN

CONTENTS

UNIT EXPRESSION GRAMMAR ...ttt eninns 23

6.1 Derived UNIES .oovveeeiiiiesieimsriesieeserisisess s s setsieeeeseeeeeeeemesanssensesvasesssnesses Aok
6.2 Unit Dimension and Unit Reductionccoovvnieievemsiice e e vereseeereres 44
6.3 Unit Conversion Using Reduced Standard Formscooeeveviecicc v 43

N th B W

n

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handl i ng Services, 2000

API RPxbb 9 EE 0732290 0556831 439 E

. Recommended Practice for Exploration and Production
Data Digital Interchange
Part 4: The API-SI Unit Model

0 Introduction

0.1 This standard contains introductory, normative, and annotative information.
Introductory information comprises everything that precedes Section 1, Scope. The
introductory clauses describe how the publication is organized and provide commentary
on the history and purpose of this standard. Normative information includes the actual
requirements that must be satisfied by any data conforming to the standard. Annotative
information is provided as rationale for and illustrations about the normative information
and does not constitute part of the standard. The standard is completely stated even if all
introductory and annotative information are removed. Annotative information may refer to
terms introduced in later paragraphs or parts in order to tie together concepts, i.e., from

time to time its value may increase after the reader has made a complete pass over the
standard.

0.2 Different styles are used to distinguish between normative and annotative
information.

0.3 All normative information is written using this same font, and is contained in either
numbered paragraphs or numbered tables. Normative text is aligned with the left margin

. of the page.

0.4 All figures are annotative, and all annotative text is written in unnumbered
paragraphs in Helvetica italic font, indented, as shown here:

This is a paragraph of annotative text. lts purpose is to include informal
commentary on the normative information in immediately preceding or
following paragraphs and may include references to or usage of normative
information in other parts of the standard.

1 Scope

This part describes the syntax of a unit model administered by the API Subcommitiee
On Standard Format For Digital Well Data. The name of the vnit model is API-SI. This

unit model is based upon le Systéme International d’Unités (SI), with some extensions
suitable for use by oilfield businesses.

2 References
The unit model described here is based on guidelines published in the following
documents. These references are provided for information only and do not form a part of

this standard.

IEEE!
STD 260-1978 IEEE Standard Letter Symbols for Units of Measurement.

! The Institute of Electrical and Electronics Engineers, Inc., 345 East 47th Street, New York, NY 10017-2394.

4-1

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

API RPxbb 9b EE 0732290 055k832 375 N

4-2 APl RECOMMENDED PRACTICE 66, V2

50 o

1000-1981 (E) SI units and recommendations for the use of their multiples and of
certain other units

SPE?
The SI Metric System of Units and SPE METRIC STANDARD

3 Definitions

3.1 base unit: a unit that cannot be expressed in terms of other units.

3.2 derived unit: a unit expressed as a dimensionless scaling or as an algebraic
combination of other units.

3.3 unit conversion: an algcbraic transformation of a value represented in one unit to
an equivalent value represented in a related unit.

3.4 unit model: a grammar in which unit symbols from an administered dictionary are
combined and scaled to represent expressions of desired units.

3.5 unit symbol: a dictionary-administered word, or token, that represents a unit of
measure.

4 Concepts

4.1 The API-SI unit model consists of a grammar in which unit symbols from an
administered dictionary are combined and scaled to produce expressions of desired units.
The grammar (see 3.1) describes how to combine unit symbols using the algebraic
operations multiplication, division, and exponentiation. The resulting combination may
then be scaled by a numeric multiplier, which is expressed in terms of multiplication,
division, and exponentiation of integer and decimal numbers. Finally, a similar numeric
offset term may be applied to the scaled combination.

4,2 The unit symbol dictionary (see Part 5) contains symbols for a large number of
commonly-used units. These are divided into two groups: base unit symbols and derived
unit symbols. A base unit is not defined in terms of any other unit symbols. It represents
the standard reference unit of a basic physical or dimensionless quantity. A derived unit
symbol, on the other hand, is defined as an expression of other unit symbols or as a
dimensionless scaling.

4.3 A unit symbol may be used in an API-SI unit expression only if it appears in the
API-SI unit dictionary listed in Part 5 of this standard. API-SI unit symbols match
corresponding SI unit symbols when such units are defined under SI. Additional unit
symbols (including base units) have been added to the API-SI unit dictionary for
commonly-used oilfield and (dimensionless) monetary quantities.

This model is based on the Sl notion that from a small handful of basic
quantities all other quantities can be derived by algebraic operations. The Si
basic quantities are length, mass, time, electric current, temperature, luminous
intensity, and amount of substance. Two dimensionless supplemental
quantities—plane angle, and solid angle—are typically added. These have

2 International Organization for Standardization. ISO publications are available from ANSI. .
3 Society of Petroleumn Engineers, P.O. Box 833836, Richardson, TX 75083-3836.

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

API RPxtb b HE D?32290 055L433 201 WA

EXPLORATION AND PRODUCTION DATA DIGITAL INTERCHANGE, PART 4: THE API-S1 UNIT MODEL

. corresponding reference units m (meter), kg (kilogram), s (second), A
{ampere), K (kelvin), cd (candela), mol {mole), rad (radian), and sr (steradian).

Given length and tirne, for example, velocily may be derived as length/time, and
a corresponding unit for velocity may be expressed as m/s.

In addition to derived units that represent new quantities, there are derived
units that represent scalings of other quantities. For example, the expression
0.3048 m is also a length. The expression 0.3048 m can be assigned to a
customary unit symbol, e.g., ft. The symbol fi is a derived unit symbol having
definition ft = 0.3048 m. Both ft and 0.3048 m are derived units and may be
used interchangeably. It happens that ft is also a unit symbol, which can ba

found in the unit dictionary and which may be used in the definition of other
derived units.

5 Unit Expression Grammar

5.1 The following Backus-Naur Form (BNF) grammar defines the syntax for expressing

an API-ST unit.

APIUnit ::= * ' | Multiplier | StandardForm

StandardForm ::= [Multiplier ' '] FactorExpression
{*,* v * Offset]

FactorExpression ::= UnitTerm {'/' UnitTerm] |
1 '/' UnitTerm

UnitTerm ::= '(' FactorExpression '}' | UnitFactors

UnitFactors ;::= UnitFactor '.' UnitFactors | UnitFactor

. UnitFactor ::= APIUnitSymbol [UnitExponent]

APIUnitsymbol ::= {UnitCharacter}

UnitCharacter ::=
'A' | 'B' | 'C' | 'D' | 'E’ | 'F' | 'G' | ‘H*' |
I 3 'K I 'L | M | "N | O L P
'QU L YRY L 'ST LT) O | VT W X
‘Y I 2) tat ! bt] et] @] e | E
lgl l lh! I lil | Ij! I lkl | lll | Iml | Inl |
M- IS - BN~ L R L DT - A - L A |
‘who | o'xt |ty | =z R

UnitExponent ::=
['=*] APINu [*¢* ['-'] (APINumber | APINum
{'/" APINum]) ')°

Multiplier ::= ComplexNum

QOffset ::= ['-'] ComplexNum

ComplexMum ::= X ['E'" NJ['/' Y]

¥ ::= APINumber

N ::= ['-'] APINum Y ::= APINumber

APINumber ::= APINum | APINum '.°' APINum |
‘0 '.' APINum

APINum ::= '0' APINum | APINum '0' | NonZeroDigits

NonZeroDigits ::= NonZeroDigit | NonZeroDigit
{NonZeroDigit}

NonZeroDigit ::= *1' | *2' | '3* | '4' | 'S* | *&* | 7
| *8* | *9°

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

- API RPxbb S EN 0732290 OS55L834 148 EE

4-4 AP| RECOMMENCED PRACTICE 66, V2

Here are a fow examples that illustrate the grammar:

my/smeter per second
s{0.5)root-second

1E-28 m2barn (b)
0.0174532925198 raddegree {dega)
360 degacycie (c)

(e/s)(m/s){eyele per second) per (meter per second)
kg.m/s2newton (N)

N.mjoule {(J)

Jiswatt (W)

WrAvolt (V)

A/Vsiemens (S)

Note the power of the grammar to construct an arbitrary number of unit
expressions from a relatively small number of predefined unit symbols, The
successive construction method iflustrated here also makes the task of defining
new unit symbols very simple, especially with respect to computing conversion
factors (see 6.1.2).

6 Unit Conversion
6.1 Derived Units

6.1.1 Given the expression grammar described in 5.1, it is possible to derive formulas
for converting values from one unit to another. This is described in 6.1.2 and 6.3.1.

6.1.2 Letting M = Multiplier, E = FactorExpression, and O = Offset, the standard form
expression ‘M E, (' is a new derived unit. Let U represent this derived unit, i.e.,, U=ME,
O. Note that E js also a unit. Let X represent an amount expressed in vnit U and Y
represent the same amount expressed in unit E. Then the following unit conversion
equations hold:

Y=M*(X-0) (EQ 1)
X=(/M)*Y+0 (EQ 2)

The unit, degree fahrenheit (°F), is derived from degree celsius (°C) using the
expression °F = §/9 °C, 32. If X and Y reprosent the same temperature in °F
and °C, respectivaly, then

Y= (5/9)(X~32)and X= (9/5) Y+ 32.
For example,
50°F = (5/9) (50 — 32)°C = 10°C.

6.1.3 Applications typically need to convert between units when one is not directly
expressed in terms of the other. The procedure for doing this is described in 6.3.1.

8.2 Unit Dimension and Unit Reduction

"6.2.1 Any two units U and E related by a standard form expression ‘U =M E, O', are
said to belong to the same unit dimension. Alernatively, any two units consisting of
multiplers only are said to be dimensionless. A standard form expression can be reduced by
successive substitution to a dimensionless unit or to a form in which E has only base unit
symbols. This provides an algorithmic tool for detecting when two units have the same unit .
dimension and for computing the factors M and O needed to convert one unit to another.

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

API RPxhLbL 9L WE 0732290 0556835 D&y WA

EXPLORATION AND PRODUCTION DATA DIGITAL INTERCHANGE, PART 4: THE API-S1 UNIT MODEL

. 6.2.2 Dimensionless units are already in reduced form. When there are no offsets,
reduction is accomplished by substituting each unit symbol in E by its dimensionless or
standard form, applying appropriate exponentiation and algebraic simplification, then
factoring all multipliers out to create a new multiplier. If the new E reduces to [, it is
dropped out to produce a dimensionless unit. This is iterated until E has only base unit
symbols or until a dimensionless unit results.

Exarmnple —

mithr?= (5280 f)/(60 min)°= 5280/3600 fi/min= 4.4/3 ft/min?
= 4.4/3(0.3048 m)/(60 s)° = (4.4)(0.3048)/(3)(3600) m/s®

= 0.02794/225 n/s?

6.2.3 For the simple case in which a factor expression has no denominator, and a single
unit factor with exponent |, then reduction with offset is governed by (EQ 1).

Example —
From the unit symbol dictionary,

°F = 5/8°C, 32 and
°C=K, ~273.15.

If X°F, Y°C, and Z K all represent the same temperature, then from (EQ 1):

Z=Y+273.15
. = (5/9)(X — 32) + 273.15
= (5/9X(X + 459.67)

which by reverse application of (EQ 1} implies:
°F = 5/9 K, ~459.67.

6.2.4 When a unit factor is in a denominator or has an exponent other than 1 or is not the
only unit factor in the factor expression, then any offset in the definition of the unit factor
is dropped. That is, such a unit factor is considered to represent a differential quantity.

Example —

The unit °F/ft represents a temperature difference per length. It may be reduced
by ignoring the offsets in the definition of °F and ~C:

°F/t = 5/9°C/(0.3048 m)
= 0.508/3°C/m
= 0.508/3 K/m.

6.3 Unit Conversion Using Reduced Standard Forms

6.3.1 Assume units U and V have been reduced to standard form expressions ‘My; Ey,
Oy’ and ‘My Ey, Oy’, respectively where E{; and Ey have only base unit symbols. Then U
and V belong to the same unit dimension if and only if E(;/Ey, algebraically reduces to 1.

. Furthermore, if X represents an amount in unit U, and Y represents the same amount in
unit V, then from (EQ 1):

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

API RPxbb 96 HB 0732290 055b43b T1i0 N

4-6 APl RECOMMENDED PRACTICE 66, V2
My(X - Oy) =My(Y - Oy) (EQ3)
Y = (My/MyXX - Oy) + Oy (EQ4)

For example, to convert X mi/hr to Y km/s, first reduce both expressions:
mi/hr= 5280 ft /3600 s

= 4.4/3 (0.3048 m)/s

= 0.44704 mv/s [My= 0.44704, Oy= 0]
kmi/s = 1000 mv/s {My,= 1000, Oy = 0].

Note that m/s is the faclor expression for both units, so U and V are converiible.
Using (EQ 4), we get:

Y = 0.44704/1000 X
= 0.44704E-3 X.

6.3.2 The same conversions shown in (EQ 3) and (EQ 4) also hold when two units
reduce to dimensionless units, since only multipliers and offset are involved.

One could incorporate the dimensionless case into the standard form case by
using a pseudo base unit syrmbol “nodim”.

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

API RPxkb 95 EM D7?732290 0556437 957 EA

Recommended Practices for
Exploration and Production Data
Digital Interchange

Part 5: The API-SI Unit Symbols

Exploration and Production Department

. AP| RECOMMENDED PRACTICE 66, V2
SECOND EDITION, JUNE 1996

American
o L) Petroleum

Institute

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

-

API RPxbLt S5 EM (0732290 0556838 893 W

CONTENTS

3 BASE UNIT SYMBOLS .
3.1 SIBase Unit Symbo]s

Tables
5-1—SI Base Unit Symbols ..
5-2—API-S1 Base Unit Symbols—Ncm-Currency

Page

v 5-1
e 3-1
v 3-1

e 322
3.2 API-SI Supplementary Base Unlts—Non-Currency
3.3 API-SI Currency Base Unit Symbolsc.oooovoviiiiiininiiiiiceeeeeeern,

4 DERIVED UNIT SYMBOLS ..ottt vt s ets s s e e ere e

W32

e 3-5

e 5-2
5-3—API-SI Currency Base Unit Symbolscccoeovevveereeen.

5-4—API-8T Derived Unit Symbolscooveoiiiiemieeceeeee 5-35

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handl i ng Services, 2000

API RPxbk 9t EE 0732290 0556439 72T MR

Recommended Practice for Exploration and Production
Data Digital Interchange
Part 5: The API-SI Unit Symbols

0 Introduction

0.1 This standard contains introductory, normative, and annotative information.
Introductory information comprises everything that precedes Section 1, Scope. The
introductory clauses describe how the publication is organized and provide commentary
on the history and purpose of this standard. Nermative information includes the actual
requirements that must be satisfied by any data conforming to the standard. Annotative
information is provided as rationale for and illustrations about the normative information
and does not constitute part of the standard. The standard is completely stated even if all
introductory and annotative information are removed. Annotative information may refer to
terms introduced in later paragraphs or parts in order to tie together concepts, i.e., from
time 10 time its value may increase after the reader has made a complete pass over the
standard.

0.2 Different styles are used to distinguish between normative and annotative
information.

0.3 All normative information is written using this same font, and is contained in either
numbered paragraphs or numbered tables. Normative text is aligned with the left margin
of the page.

0.4 All figures are annotative, and all annotative text is written in unnumbered
paragraphs in Helvetica italic font, indented, as shown here:

This is a paragraph of annotative text. its purpose is to include informal
commentary on the normative information in immediately preceding or
following paragraphs and may include references to or usage of normative
information in other paris of the standard,

1 Scope

This part lists and defines the unit symbols recognized under the API-SI unit model (sce
Part 4).

2 References

The unit symbols described here are based on guidelines published in the following
standards. These references are provided for information only and do not form a part of
this standard.

1SO*
4217 Codes for the Representation of Currencies and Funds
1000-1981 (E) ST units and recommendations for the use of their multiples and of
certain other units

! International Organization for Standardization. ISO documents may be obtained from GLOBAL ENGINEER-
ING DOCUMENTS, 2805 McGraw Ave., Irvine, CA 92714. Phone (714) 261-1455.

51

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

API RPxbb 9b HR 0732290 055b&840 44l HR

5-2 AP| RECOMMENDED PRACTICE 66, V2

3 Base Unit Symbols
3.1 Sl Base Unit Symbols

Table 5-1 describes the base unit symbols defined under le Systéme International
d’Unités (SI).

Table 5-1 — S| Base Unit Symbols

Urit Symbaol Unit Name
A ampere
K kelvin
cd candela
kg kilogram
m meter
mol mole
rad radian
s second
st steradian

3.2 API-S! Supplementary Base Units—Non-Currency

Table 5-2 describes the supplemental base unit symbols defined under API-SI, exclud-
ing currency unit symbols. These are not considered to be SI base units.

Table 5-2 — API-SI| Base Unit Symbols — Non-Currency

Unit Symbol Unit Name
dAPL . api gravity
dB decibel
gAP] api gamma ray
nAPI api neutron

3.3 API-SI Currency Base Unit Symbols

Currency base units are based on the alphabetic currency codes defined in Table A.1
(excluding fund codes) of ISO 4217, Only the codes listed in Table 5-3 apply to the API-SI
unit model. They are not considered to be SI base units.

Table 5-3 — API-SI Currency Base Unit Symbols

Unit Symbol Unit Name
ADP Andorran peseta
AED UAE dirham
AFA Afghanistan afghani
ALL Albanian lek
ANG Netherlands Antillian guilder
AQK Angolan kwanza
ARA Argentinian austral
ATS Austrian schilling
AUD Australian dollar
AWG Aruban guilder
BBD Barbados dollar
BDT Bangladesh taka
BEF Belgian franc

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

API RPxbb 95 ER 0732290 055684l 348 WA

EXPLORATION AND PRODUCTION DATA DIGITAL INTERCHANGE, PART 5: THE API=S! UNIT SYMBOLS

. Table 5-3 — API-S| Currency Base Unit Symbols (Continued}
Unit Symbol Unit Name
BGL Bulgarian lev
BHD Bahraini dinar
BIF Burundi franc
BMD Burmuda dollar
BND Brunei dollar
BOB Bolivian boliviano
BRC Brazilian cruzado
BSD Bahamian dollar
BTN Bhutan ngultrum
BUK Burmese kyat
BWP Botswanian pula
BZD Belize dollar
CAD Canadian dotlar
CHF Swiss franc
CLP Chilean peso
CNY Chinese yuan renminbi
COP Colombian peso
CRC Costa Rican colon
CSK Czechoslovakian koruna
CupP Cuban peso
CVE Cape Verde escudo
CYP Cyprus pound
DDM Mark der DDR
DEM Deutsche mark
DIF Djibouti franc
. DKK Danish krone
DOP Dominican peso
DZD Algerian dinar
ECS Ecuadorian sucre
EGP Egyptian pound
ESP Spanish pescia
ETB Ethiopian birr
FIM Finnish markka
FiD Fiji dollar
FKP Falkland Islands pound
FRF French franc
GBP British pound sterling
GHC Ghanian cedi
GIP Gibrahar pound
GMD Gambian dalasi
GNF Guinea franc
GRD Grecian drachma
GTQ Guatemnalan quetzal
GWP Guinga-Bissau peso
GYD Guyana dotlar
HKD Hong Kong dollar
HNL Honduran lempira
BTG Haitian gourde
HUF Hungarian forint
IDR Indonesian rupiah
IEP Irish pound
ILS Israeli shekel
INR Indian rupee
. 19D Iraqi dinar
IRR franian rial

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

API RP*bb 9b HE 0732290 055b8u42 214 WA

54 AP} RECOMMENDED PRACTICE 66, V2

Table 5-3 — APi-S| Currency Base Unit Symbols (Continued)

Unit Symbol Unit Name
ISK Iceland krona
ITL Italian lira
IMD Jamaican dollar
JOD Jordanian dinar
IPY Japanese yen
KES Kenyan shilling
KHR Kampuchean nel
KMF Comoro franc
KPW North Korean won
KRW South Korean won
KwWD Kuwaiti dinar
KYD Cayman lslands dollar
LAK Lao kip
LBP Lebanese pound
LKR Sri Lanka rupee
LRD Liberian dollar
LSL Lesothoan loti
LUF Luxembourg franc
LYD Libyan dinar
MAD Moroccan dirtham
MGF Malagasy franc
MNT Mongolian tugrik
MOFP Macauan pataca
MRO Mauritanian ouguiya
MTL Maltese lira
MUR Mavuritius rupee .
MVR Maldives rufiyaa
MWK Malawian kwacha
MXP Mexican peso
MYR Malaysian ringgit
MZM Mozambigue metical
NGN Nigerian naira
NIC Nicaraguan cordoba
NLG Netherlands guilder
NOK Norwegian krone
NPR Nepalese rupee
NZD New Zealand dollar
OMR Omani rail
PAB Panamanian balboa
PEI Peruvian inti
PGK Papua New Guinean kina
PHP Philippine peso
PKR Pakistan rupee
PLZ Polish zloty
PTE Portuguese escudo
PYG Paraguayan guarani
QAR Qatari rial
ROL Romanian leu
RWF Rwanda franc
SAR Saudi riyal
SBD Solomon islands dollar
SCR Seychelles repee
sop Sudanese pound .
SEK Swedish krone
SGD Singapore dollar

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

API RPxbb 9b EE 0732290 055B84%3 150 Em

EXPLORATION AND PRODUCTION DATA DIGITAL INTERCHANGE, PART 5: THE API-SI UNIT SYMBOLS

. Table 5-3 — API-SI Currency Base Unit Symbols (Continued)
Unit Symbol Unit Name
SHP St. Helena pound
SLL Sierra Leone leone
505 Somali shilling
SRG Suorinam guilder
STD Sao Tome and Principe dobra
SUR CIS rouble
SvQC E! Salvador colon
SYP Syrian pound
SZL Swaziland lilangeni
THB Thai baht
TND Tunisian dollar
TOP Tongan pa’anga
TPE Timor escudo
TRL Turkish lira
TTD Trinidad and Tobago dollar
TWD New Taiwan dollar
TZS Tanzanian shilling
UGS Uganda shilling
USD US dollar
UYP Uruguayan peso
VEB Venezuelan bolivar
VND Victnamese dong
yuv Vanuatuan vatu
WST Western Samoan tala
XAF CFA franc, Central Africa
. XCD East Caribbean doltar
XDR SDR, internaticnal monetary fund
XEU European currency unit
XOF CFA franc, West Africa
XPF CFP franc
YDD Yemeni dinar
YER Yemeni rial
YUD new Yugoslavian dinar
ZAR South African rand
ZMK Zambian kwacha
ZRZ Zaire zaire
ZWD Zimbabwe dollar

4 Derived Unit Symbols

4.1 Table 5-4 describes all derived unit symbols recognized under the API-SI unit

model.
Table 5-4 — API-SI Derived Unit Symbols
Unit Symbol Unit Expression Unit Name
% 0.01 percent
B 104B bel
Bg /s becquerel
Btu 1055.05585262 1 British thermal unit

(international)

C As coulomb
Ci 37GBq curie

D 09869233 um2 darcy

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

API RPxbk AL EM 0732290 O55kLady (097 WA

AP| RECOMMENDED PRACTICE 66, V2

Table 5-4 — API-SI Derived Unit Symbols {(Continued)

Unit Symbo! Unit Expression Unit Name
EJ IE18) exajoule
F v farad
GBq 1E9 Bq gigabecquerel
GHz 1E9 Hz gigahertz
Gl IE9) gigajoule
GPa IE9 Pa gigapascal
GS IE9 S gigasiemens
GW IE9 W gigawatt
Gal cm/s2 galileo
GeV IES eV gigaclectronvolt
Gohm IEQ ohm gigaohm
Grad 1ES rad gigaradian
Gy kg gray
H WbH/A henry
Hz s hertz
i} N.m joule
L dm3 liter
MA 1E6 A megampere
MBqg 1E6 Bq megabecquerel
MHz 1E6 Hz megahertz
MJ 1E6J megajoule
MN |IE6 N meganewton
MPa LE6 Pa megapascat
MV 1E6 V megavolt
Mw 1E6 W megawatt
Ma 1E6 a million years
MeV IE6 eV megaelectronvolt
Mg 1000 kg megagram
Mm 1E6 m megameter
Mohm 1E6 ohm megohm
Mpsi 1ES6 psi million pounds per square inch
Mrad 1E6 rad megaradian
N kg.m/s2 newton
Qe 79.57747 A/m oersted
P 0.1 Pas poise
Pa N/m2 pascal
S AV siemens
Sv kg sievert
T Wh/m2 tesla
TBq 1E12 Bq terabecquerel
T) IE12) terajoule
™ IEI2W terawati
TeV 1EI2 eV teraelectionvolt
Tohm 1E12 ohm terachm
v W/A volt
w Ms walt
Wb Vs weber
a 3.155815E7 s annum (sidereal year)
al 1E-181J attojoule
acre 627264E5/15499969 m2 acre
ag IE-18 g attogram
atm 101.325kPa standard atmosphere
b 1E-28 m2 bam
bar 100 kPa bar
bbl 42 galUs barrel (U.8.)

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

-

API RPxhh 9L Bl 0732290 055L84S T23 HN

EXPLORATION AND PRODUCTION DATA DIGITAL INTERCHANGE, PART 5: THE API=SI UNIT SYMBOLS

57
. Table 5-4 — AP1-SI Derived Unit Symbols (Continued)
Unit Symbol Unit Expression Unit Name
c 360 dega revolution {cycle)
cP 001 P centipoise
cal 4,1868) calorie (international}
cm 0.0l m centimeter
cu 0.1 I/m capture unit
d 24h day
daN i0N decanewton
dega 0.0174532925198 rad degree (angle)
°C K,-273.15 degree celsius
°F 59°C, 32 degree fahrenheit
degR 59K degree rankine
dm 0.l'm decimeter
ehp 746 W electric horsepower
ev 1.60219E-19) electron volt
fC 1E-15C femtocoulomb
fm 1E-15 m femtometer
ft 12in foot (international)
fraM 0.30478897 foot (American modified)
fiCla 0.30479727 m foot (Clarke)
ftus 1200/3937 m foot (U.S. survey)
g 0.001 kg gram
galUK 4,54609E-3 m3 gallon {1J.K.)
galUs 3.78541 1784E-3 m3 gallon (U.8)
gf 0.001 kgt gram force
h 60 min hour
. hi. 100 L hectoliter
ha 1E4 m2 hectare
hbar 100 bar hectobar
hhp 746,043 W hydraulic horsepower
hp 530 feAbfls horsepower
in 00254 m inch {international)}
inUs 1712 RUS inch (U.S. survey)
kA 1000 A kiloampere
kC 1000 C kilocoulomb
kHz 1000 Hz kilohertz
kJ 1000 J kilojoule
kN 1000 N kilonewton
kPa 1000 Pa kilopascal
kS 1000 8 kilosiemens
kv 1000V kilovolt
kw 1000 W kilowatt
keal 1000 cal kilocalorie
ked 1000 cd kilocandela
keV 1000 eV kiloelectronvolt
kgf 9806650 N kilogram force
kix 1000 1x kilolux
km 1000 m kilometer
kmaol 1000 mol killomole
kohm 1000 ohm kilohm
krad 1000 rad kiloradian
1bf 4.4482216152605 N pound force
Ibm 0.45359237 kg pound mass (avoirdupois)
Im cd.sr lumen
. 1x cd.si’m2 lux
mA 0.001 A milliampere

COPYRI GHT 2000 Anerican PetroleumlInstitute

I nformati on Handl i ng Servi ces,

2000

API RPxbb 9 EE 0732290 055b34k 9LT HH

58 APl RECOMMENDED PRACTICE 66, V2

Table 5-4 — API-SI Derived Unit Symbols (Continued)

Unit Symbol Unit Expression Unit Name
mC 0.001 C millicoulomb
mCi 0.001 Gi millicurie
mD 0.9869233E-3 um2 millidarcy
mGal 0.001 Gal milligal
mGy 0.001 Gy milligray
mH 0.001 H milliheary
mHz 0.001 Hz millihenz
ml 0.00¢) millijoule
mL 0.001 L milliliter
mN 0.001 N millinewlton
mPa 0.001 Pa millipascal
ms Q.001 5 millisicmens
mSv 0.001 8v millisievert
mT 0001 T millitesla
my 0.001 vV millivolt
mw 0.001 W milliwatt
mwb 0.001 Wb milliweber
mbar 0.001 bar millibar
mg 0001 g milligram
mi 5280 fi mile (statute)
miUs 5280 ftUS mile (U.S. survey)
min 60 s minule
mina 1/60 dega minute {angle)
mm 0.001 m millimeter
mmol 0.001 mot millimole
mohm 0.001 ohm millichm .
mrad 0.001 rad milliradian
ms 0.001 & miklisecond
nA 1E-9A nanodampere
nC 1E-9C nanocoulomb
nCi 1E-9 Ci nanocurie
nH 1E-9H nanohenry
nl 1E-91] nangjoule
nT 1E-9T nanotesla
nw |IE-9W nanowatt
nm 1E-9m nanometer
nohm |E-9 ohin nanchm
ns 1E-95 nanosecond
chm VA ohm
ozf 1/16 1bf ounce force
ozm 1716 {bm OQUNCE MASS
pA 1E-12A picoampere
pC IE-12C picocoulomb
pCi IE-12 Ci picocurie
pF IE-I12F picofarad
pPa |E-12 Pa picopascal
pS IE-128 picosiemens
pm {E-12 m picometer
ppdk 1E-4 part per ten thousand
prk 0.001 part per thousand
ppm IE-6 part per million
ps 1E-12 % picosecond
psi 1bf/in2 pound per square inch
pu 0.01 m3/m3 porosity unit .
SeCh 1/3600 dega second (angle)

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

API RPxbb 9L WM 0732290 055L&u47 ATL WA

EXPLORATION AND PRODUCTION DATA DIGITAL INTERCHANGE, PART 5: THE API-S| UNIT SYMBOLS

. Table 5-4 — API-Si Derived Unit Symbols (Continued)
Unit Symbol Unit Expression Unit Name
1 1000 kg metric ton
tonUK 2240 1bm tong ton (U.K))
tonUS 2000 Ibm short ton (U.S.)
uA 1E-6 A microampere
uw(C IE-6C microcoutomb
uCi 1E-6 Ci microcurie
uF IE-6 F microfarad
eH 1E-6 H microhenry
uHz 1E-6 Hz microhertz
w 1E-6) microjoule
uN |E-6 N micronewton
uPa 1E-6 Pa micropascal
u§ 1E-6 5 microsiemens
uT IE-6T microtesla
uv IE-6VY microvolt
uw IE-6 W microwatt
uwh LE-6 Wh microweber
ubar 1E-6 bar microbar
ug IE-6 g microgram
um 1E-6 m micrometer
umol 1E-6 mole micromole
uohm 1E-6 chm microhm
upsi 1E-6 psi micropound per square inch
urad 1E-6 rad microradian

. us 1E-65 microsecond

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handl i ng Services, 2000

API RPxbb 9:- ER 0732290 055baud 732 I

Recommended Practices for
Exploration and Production Data
Digital Interchange

Part 6: Basic Schema

Exploration and Production Department

. API RECOMMENDED PRACTICE 66, V2
SECOND EDITION, JUNE 1996

American
o I Petroleum

Institute

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

API RP*bb 9b EE 0732290 0556849 679 BN

CONTENTS

DICTIONARY-CONTROLLED IDENTIFIERSccovcooveieeeeevseecscen 65
REQUIRED VS OPTIONAL USE OF ATTRIBUTEScc.oooooooeooovveoo 6-5

FREQUENTLY-USED ATTRIBUTES_......ooieeeeeceeseoeoeeeeeeooe 65
8.1 Interpretation of a Dimensioned Arrayoccocveceeveeeeeeroceeceeesss 66

9 REQUIRED OBJECT TYPESccooteiiieeeeeeeee oo e v seeeeseeeesesesene 6T
9.1 File-Headercoomiiiiriiiceeeecoeees e oo voonns 6T

. 10 OPTIONAL OBJECT TYPESccooivrmvummnnnieiccmreretereessereeeseeeeeeeeee oo eenn, 6210

W - ™ bR W N

10.2 Chanmel ..ot eeeree v et G211
10,3 COmMMENL ...ttt ee e eenons 6§13
10,4 Compulationcccoooocimrimmnneteeeeee e e reneessnn, G=13
LO.5 Frame oottt evees s enssa e e s 6214
T0.6 GIoup ..ot sesves st see e rsererens. G216
F0.7 NO-FOTIMAL ..ottt 6-16
10.8 Origin-Translation ... es et oo 617
10.9 Paramelercocoviiiinireririvieiinieress oot sss e 617
1010 PrOCESS w.oooee ettt sn e, 6-18
1002 ZONE oo teeser et e ee e ee e seseseanss. 6220
10.13 Updatable ALTBUIES ..oooiooeeiicreeee v 6-20

Figures
6-1—Examples of AZEICEALESc.cooovveeimiresieitecse e resesves e 66
6-2 A Frame BIock ...t e, 614
6-3—An Unbounded Grid of Frame Type INdeXes ...ooeeeeevvvevcsnseesrneooooons 6-15

Tables
6-1—Frequently-Used Aributesoovoeooocociceecceeeeeeeeoeeeeeesseinee 625
6-2—FILE-HEADER AUIIDULES «.....oouoiivmmmiresis e ceeeee oo 6-7
6-3—ORIGIN AUEDBULES ...t eeeeoens 6=0)

6-4—AXIS AUTBULEScorririiririnninrcieies s s erese e essess s s, 6210
. 6-5—CHANNEL AUITBULES ©...ooeoeee oo, 611

6-0—COMMENT AUMNDUIES ...ocvcieecrec st eeeee e s rse e ses e, 6213

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

API RPxbb 9t EE (732290 0O55kA&50 350 WA

Tables (Continued)
6-T—COMPUTATION ACETDULES 1oovvveeveeeeiiceeieciieecenresssssesessvsesassos s sanesssnrerssssaness
6-8—FRAME ANIIDULES .oieviiviiiniiiiiriririiisiiii s rises s cassssssss s e st raee s smemarenensssssnee
6-0—GROUP AUMDULES ...ovvviiieveees e cies s ee s eve s s rasa s soss s s emne oot eenanen

6-1 | —ORIGIN-TRANSLATION AUIDULES ..ovvvecevievrereirrersreressseersssessesseenesesones
6-12Z—PARAMETER ALIIDULIES ..oooooieiriiiviiiimieececrerereesereresssesnensnensnsnsssnenenenenan
6-13—PROCESS ALFDULESccoiiieiiiiicrieerisineiessvssisisis e semersrmreessstossasanessrasasesans
6-14—UPDATE ALUIBULES ..c.vvievieieiaiiiis s iabe it esrsvese e se e e soee s sra s tnevaveveraranaseres
B-15—ZONE AUIDULIES ..oeveiiiiiiiriiicieriies s iseisis s sssssasissssarasets o s s s sameen e s enemarasesens
6-16—Updatable AUTIDULEScovrrercccirerirernivenirersrerse e rer e e e sasssase s s s s rannees

Page

6-13
6-16
6-16
6-17
6-17

.. 6-18
.. 6-18
.. 6-19
.. 6-20

6-20

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handl i ng Services, 2000

-

API RPxbLb A9 HB 0732290 0O55LA51 227 IR

Recommended Practice for Exploration and Production
Data Digital Interchange
Part 6: Basic Schema

0 Introduction

0.1 This standard contains introductory, normative, and annotative information.
Introductory information comprises everything that precedes Section 1, Scope. The
introductory clauses describe how the publication is organized and provide commentary on
the history and purpose of this standard. Normative information includes the actual
requirements that must be satisfied by any data conforming to the standard. Annotative
information is provided as rationale for and illustrations about the normative information and
does not constitute part of the standard. The standard is completely stated even if all
introductory and annotative information are removed. Annotative information may refer to
terms introduced in later paragraphs or parts in order to tie together concepts, i.e., from time
10 time its value may increase after the reader has made a complete pass over the standard.

0.2 Different styles are used to distinguish between normative and annotative information.

0.3 All normative information is written using this same font, and is contained in either
numbered paragraphs or numbered tables. Normative text is aligned with the left margin
of the page.

0.4 All figures are annotative, and all annotative text is written in unnumbered
paragraphs in Helvetica italic font, indented, as shown here;

This is a paragraph of annotative text. lis purpose is to include informal
commentary on the normative information in immediately preceding or

following paragraphs and may include references to or usage of normative
information in other paris of the standard.

1 Scope

Using the methodology outlined in Part 1, this part describes the schema, namely the
collection of object types, administered by the API Subcommittee On Standard Format
For Digital Well Data using organization code 0 (zero). This schema described in this part
is called the basic schema. It includes object types required by any implementation of AP1
Recommended Practice 66, namely FILE-HEADER and ORIGIN, and object types for
recording data of a general nature, for example FRAME and CHANNEL.

The object tvpes of the basic schema are intendad to be industry-neutral.

Some attributes of the basic schema object types have values restricted to a
dictionary of standard reference values. These are listed in Part 7.

2 Definitions

2.1 attribute: A named item of information or data pertaining to an object type.
2.2 attribute count: The number of elements in an attribute value.

2.3 attribute label: The name of an attribute.

2.4 attribute representation code: A code that identifies the recorded
representation of each element of an attribute value.

8-1

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

API RPxbb 96 EM 0732290 0556452 153 WA

6-2 APl RECOMMENDED PRACTICE 66, V2

2.5 attribute units: An expression that represents the units of measurement of each
element of an attribute value.

2.6 attribute value: The value of an attribute. It may be present or absent. When
present, it consists of zero or more elements, each having the same units and the same

representation.

2.7 channel: A measured or computed quantity that occurs as a sequence of indexed
values.

2.8 consumer: The system or application program or company that reads or uses API
Recommended Practice 66 information,

2.9 data descriptor reference: An object name written at the beginning of an IFLR
and used to associate the IFLR with the object that describes its content.

2.10 data model: A description of a specification and representation paradigm for data.
2.11 defining origin: The first ORIGIN object in a logical file.

2.12 dictionary: A database in which identifiers and reference values used under API
Recommended Practice 66 are maintained and administered.

2.13 dimension: a vector of integers that describe the dimensionality and extent of the
coordinate axes of an array.

2.14 empty logical file: a logical file having only a FILE-HEADER set and for which
the attribute END-OF-STORAGE-SET is both present and true (value = 1),

2.15 frame: A set of channel values, one value per channel, written in an IFLR
described by a FRAME object.

2.16 frame block: The set of one or more frames written in the same IFLR.

217 frame number: A positive integer representing the sequential position of a frame
in a frame type or (if the frame type is unordered) representing a number index on the
frame. The frame numbers of all frames in a frame block are written preceding the frame
block in an IFLR.

2.18 frame type: The set of frames associated with a FRAME object. A frame type is
represented by the FRAME cbject name.

2.19 identifier: One of the three parts of an object name. It is a character string used to
distinguish the object from other objects of the same type. For some designated object
types, the identifier conveys meaning of the nature of the object, and the identifier and its
meaning are maintained in a dictionary.

2.20 1ogical file: The main unit of data exchange. It consists of a sequence of one or
more logical records, beginning with a record containing a single FILE-HEADER object.

2.21 1logical format: A description of how to encode data in a media-independent
sequence of 8-bit bytes. This is the view of API Recommended Practice 66 that is
independent of any physical binding.

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

—

API RPxbb A9b EE 0732290 O055LA853 OTT WA

EXPLORATION AND PRODUCTION DATA DIGITAL INTERCHANGE, PART 6; BASIC SCHEMA

6-3

222 logical model: A conceptual organization of a domain of knowledge.

2.23 logical record: An organization of data values into coherent, semantically-
related packets of information. A logical record may have any length greater than sixteen
bytes and is organized in one of two syntactic forms: explicitly-formatted logical record
{EFLR) or indirectly-formatted logical record (IFLR).

224 logical record segment: A construct that contains the structure necessary to
describe and support the physical implementation of a logical record. A logical record is
implemented as one or more logical record segments. A segment is wholly contained in a
visible record, but two segments of the same logical record may be in different visible records.

2.25 object: A recorded instance of an object type.

2.26 object name: A three-part unique reference to an object consisting of an origin, a
copy number, and an identifier.

2.27 object type: A logical entity of a schema that has a unique type name and one or

more defined attributes. Instances of an object type are written in explicitly formatted
logical records.

2.28 organization code: A number assigned by API to an organization that identifies

the organization and represents schemas and dictionaries defined and administered by the
organization.

2.29 origin: One of three parts of an object name. It is a number referring to a distinct
ORIGIN object that contains context information for the objecis that reference it.

2.30 parent file: For a data item, the logical file in which data item was originally created.

231 producer: The system or application program or company that recorded
information under API Recommended Practice 66.

2.32 representation code: A unique number that identifies a standard encoding for a
value as a sequence of one or more contiguous bytes.

2.33 schema: A formalized description of the encoding of information defined by a
logical model, typically in terms of a data model.

2.34 schema code: A numeric code found in Appendix A used to identify the
organization responsible for defining and administering a schema.

2.35 set: A collection of one or more objects of the same object type. A set is recorded
in an EFLR, and each EFLR has exactly one set.

2.36 set type: The type of objects in a set.

2.37 subfield: A part of a datum for which the representation is described by a simple
(not compound) representation code. For example, the subfields of a datum having
representation code OBNAME are, in order, an integer (UVARI), another integer
{(USHORT), and a string (IDENT).

2.38 update: a change in the value of an attribute previously written in the same
logical file.

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

API RPxbbh 9b HR 0732290 0556854 T3b N

6-4 AP! RECOMMENDED PRACTICE 66, V2

2.39 storage set: A set of one or more storage units on which a sequence of one or
more contiguous logical files is recorded.

2.40 storage unit: A medium-specific data container, e.g., a tape or file, that is
identifiable and manageable by people who use the medium and on which API
Recommended Practice 66 data is recorded.

2.41 template: An ordered group of one or more attributes that represent a default or
prototype object, written at the beginning of a set.

3 Authority

Changes to the basic schema are recommended by the API Subcommittee On Recom-
mended Format For Digital Well Data and approved by the Executive Committee of the
API Exploration and Production Department. Changes may include addition of new object
types, addition of new attributes to existing object types, changes to the restrictions on
existing attributes, or removal of atiributes or object types. An attribute or object type
removed in one edition may be restored in a later edition only if restored with its previous
meaning. A new edition of the basic schema occurs when approved by the Executive Com-
milttee and has an edition number obtained by adding | to the previous edition number.

The intent is to maintain as much consistency as possible between editions.
The principle motivation for a new edition should be to add new object types or
attributes. However, from time to time compelling reasons arise for removing
iterns because they are unused or impose unreascohable burdens on users and
implementations.

4 Concepts .

4.1 A schema is a collection of object types specified and administered by an
organization (see Part 1). The schema is identified by an organization code (see Appendix
A). The object types support writing data of interest to the organization and reflect a data
model adopted by the organization, whether explicitly or implied,

4.2 The data model represented by the basic schema is implied by the descriptions of the
object types given in this part. The basic schema provides two kinds of object type:

a. Object types required in every API Recommended Practice 66 implementation to
delimit logical files and establish the context of data included in logical files. These
include:
1. FILE-HEADER, used Lo delimit the beginning of a logical file.
2. ORIGIN, used to identify and distinguish logical files and establish the context
used to interpret other objects.
b. Object types intended to be industry-neutral that support recording data of a general
nature. These include:
1. AXIS, used to describe a single coordinate axis of an array.
2. CHANNEL, used to describe the meaning and representation of an indexed
sequence of data values called a (data) channel.
3. COMMENT, used to write a textual comment,
4, COMPUTATION, used to describe the source and result of a computation
derived from other data.
5. FRAME, used to describe the organization of several commonly-indexed
channels into a sequence of IFLRs called frame blocks, where each frame block
consists of one or more frames, and each frame has one value from each channel. .
6. GROUP, used to describe application-defined groupings of other objects.

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

ARPT RPxbb 9b EE 0732290 0O55LA855 97 WA

EXPLORATION AND PRODUCTION DATA DIGITAL INTERCHANGE, PART 6; BASIC SCHEMA

. 7. NO-FORMAT, used to identify IFLRs that contain unformatted data, i.e., for
which no format description is provided other than a name.
8. ORIGIN-TRANSLATION, used to maintain an origin translation table for
encrypted logical records.
9. PARAMETER, used to write parametric data.
10, PROCESS, used to describe a process by which other data was acquired or
computed, including declarations of input data, output data, and parameters.

Il. UPDATE, used to indicate a change in the value of an attribute previously
written in the same logical file.

12. ZONE, used to identify an interval over which a value is defined or valid.

5 Unit Model
The basic schema does not impose any unit restrictions other than ‘u=" {unitless), when

applicable. Unless declared unitless, an attribute may have any unit from any unit model
having a valid unit model code and name.

6 Dictionary-Controlled Identifiers

The following object types are required to have dictionary-controlled identifiers (see

Part 2):

a. CHANNEL.

b. COMPUTATION,
¢. PARAMETER.

d

7

Required vs Optional Use of Attributes

Use of any attribute is considered optional unless otherwise stated. More stringent

requirements on presence of attributes is delegated to content standards, which are not part
of this document.

8 Frequently-Used Attributes

The attributes listed in Table 6-1 may appear in many object types and have the same or
similar meaning in each place used. The similarities are described once here and not
repeated. Extended uses and whether use is mandatory or optional may be described under
the various object types that have these attributes.

Table 6-1 — Frequently-Used Attributes

*Note Attribute Label Restrictions

1 AGGREGATE r=ULONG, u=

2 AXIS r=OBNAME. u=

3 DESCRIPTION c=l, r=ASCII, u=

4 DIMENSION r=ULONG. u=

5 EXTENDED-ATTRIBUTES r=0OBIJREF, n=

6 PROPERTIES r=IDENT | TIDENT. u=, v=(see note)

*MNotes:

I. AGGREGATE is a vector of integers that describe the structure of a value interpreted to be a set of nested
I-dimensional arrays of differing lengths. The particular value typically, though not always, belongs to one or
more other attributes in the same object, and is identified as part of the description of the object type. The first
element of AGGREGATE is the number n, of first level aggregations. The next 1] elements contain the numbers

. of level 2 aggregations, and so on, The last set of elements contain the sizes of the nested 1-dimensional arrays.
Examples are provided in Figure 6-1. DIMENSION and AGGREGATE are mutually exclusive. If one is present,
the other must be absent.

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

API RPxbb 9b WE 0732290 DS55LA5L 209 WA

6-6 AP RECOMMENDED PRACTICE 66, V2

Table 6-1 — Frequently-Used Attributes (Continued)

2. AXIS is a list of references to AXIS objects (see 10.1). A referenced AXIS object describes one coordinate
axis of an array. The AXIS attribute must be used in conjunction with a DIMENSION attribute. Whereas a
DIMENSION element describes the exient of a coordinate axis (number of coordinate values), the corresponding
referenced AXIS object further describes a starting coordinate, spacing between coordinates, coordinate axis
units, specific coordinate values, etc.

3. DESCRIPTION is & human-readable, textual description of the object and is not intended to impose or
possess syntactic or semantic content. It is available in all basic schema object types except FILE-HEADER and
has the same usage everywhere.

4. DIMENSION is a vector of integers that specify the dimensions of a bounded array. The particular armay is
often, though not always, the value of one or more other attributes in the same object, and is identified in the
description of the abject type. The common interpretation of a bounded array structere as described by a
DIMENSION attribute is given in 8.1. This interpretation may be extended for specific object types that use
DIMENSION. One kind of extension, addition of an unbounded dimension, is discussed in the description of the
FRAME object type. DIMENSION and AGGREGATE are mutually exclusive. If one is present, the other must
be absent.

5. EXTENDED-ATTRIBUTES is a list of references to other objects, typically in other schemas, that contain
additional privately-defined attributes that apply to the given object. It is available in all basic schema objects
except FILE-HEADER and ORIGIN and has the same meaning everywhere.

6. PROPERTIES is a list of dictionary-controtied reference values that indicate the general intrinsic nature of
the data associated with an object and the general processing steps that have been performed to create it.
Properties are not mutually exclusive and may be associated in various combinations with the data of a particular
object. Properties are intended to provide broad classifications for objects. There are currently no reference
values defined under the bagic schema.

AGGREGATE {4}
Value {2. 39 Or 4}
Interpretation {2, 3, 0, 4}

A 1-level aggregate: Simple array

AGGREGATE {4, 2, 3, 0, 4}

Value {3,7,1,2,6,0,1,5,5}
interpretation { {3, 7}, {1, 2, 6}, {}, {0, 1, 5, 5} }
A 2-level aggregate: Array of arrays

Value {1,2,3,4,5,6,7,8,9, 10, 11, 12, 13, elements ofyalue is the
sumn of the sizes of the

14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26} level n arrays, and the
number of level n arrays

Interpretation { { {1}, {2, 3} }, is the sum of the
({4,5,6),{7,8), 0, e o the tovel 11
{413

{{9, 10, 11, 12, 13}, {14, 15, 16, 17}, {18, 19, 20, 21, 22, 23, 24}, {25, 26} } }
A 3-level aggregate: Array of array of arrays

Figure 6-1—Examples of Aggregates

8.1 Interpretation of a Dimensioned Array

8.1.1 DIMENSION count specifies the dimensionality of a bounded amay, iec., its
number of independent, bounded coordinate axes. Each DIMENSION element specifies .
the extent of one coordinate axis. For example, DIMENSION = {3, 4, 128} describesa 3
by 4 by 128 array. If DIMENSION count > 0, the total number of elements of the

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

API RPxbLb 9L EE D7?32290 D55L857 745 W

EXPLORATION AND PRODUCTION DATA DIGITAL INTERCHANGE, PART 6: BASIC SCHEMA,

. bounded array is the product of the DIMENSION elements. The example array has
3x4x 128 = 1,536 elements. DIMENSION count shall be greater than zero (0) unless
specifically allowed in special cases described for individual object types.

8.1.2 Anarray is written as a linear sequence of elements. The mapping of this sequence
to the structure defined by DIMENSION is such that the first coordinate index changes
most rapidly, and the last coordinate index changes most slowly. If the elements of the
array are denoted by A, ; \, then the lincar order of elements is A ; |, Az | 1, Ay 1. Ao,
A2, 1w A3 ALL2 A2 12 0 Az g 128

9 Required Object Types
9.1 File-Header

9.1.1 A ssingle FILE-HEADER object delimits the beginning of a logical file and serves
as its identifying label. Every logical file shall have exactly one FILE-HEADER object.
This is required of all schemas. Furthermore, no schema other than this basic schema may
define an object type called FILE-HEADER.

9.1.2 Unless the END-OF-STORAGE-SET attribute is present and true (value = 1), the
origin subfield of the FILE-HEADER name must reference the logical file's first ORIGIN

object (see 9.2).
Table 6-2 — FILE-HEADER Attributes
. *Mote Attribute Label Restrictions
1 SEQUENCE-NUMBER c=1, =ULONG, u=
2 1D c=1, r=ASCII, u=
3 END-OF-STORAGE-SET c=}, r=8TATUS, u=
4 CONTENT-STANDARD-CODE r=ULONG, u=
5 CONTENT-STANDARD r=IDENT, u=
6 CONTENT-STANDARD-EDITION r=IDENT. u=
*Notes:

. SEQUENCE-NUMBER is a positive integer that indicates the relative sequential position of the logical file
in its storage set. It must be greater than SEQUENCE-NUMBER of the previous logical file in the same storage
set and may be any positive integer for the first logical file. This attribute is required.

2. 1D is a descriptive identification of the logical file.

3. END-OF-STORAGE-SET is used to indicate the end of a storage sel (see Part 3 for a description of storage
sets.) When this attribute is present and true (value = 1), then the corresponding logical fite shall have no records
other than the EFLR containing the FILE-HEADER set, i.e., it is an empty logical file. A logical file may be
empty only when this attribute is present and true, since all other logical files are required to have at least an
ORIGIN set (see 9,1.2). Furthermore, ner ather logical files in the same storage set may follow an empty logical
file, und every storuge sel is required 10 end with an empry logical file,

4. CONTENT-STANDARD-CODE is a list of organization codes (see Appendix A) of the organization or
organizations responsible for defining content standards to which the logical file adheres.

5. CONTENT-STANDARD is a list of content standard mames corresponding in order to the elements of
CONTENT-STANDARD-CODE. Each name identifies 2 standard for arrangement and/or quality to which the
logical file contents are assumed to adhere.

6. CONTENT-STANDARD-EDITION is a list of editions of content standards corresponding in order to the
elements of CONTENT-STANDARD.

Several of the constraints on FILE-HEADER that were present in APl Recom-
mended Practice 66, Version 1 have been dropped in this edition, notably the
fixed-field-size and rigid organization constraints. These consiraints did not
accomplish the goal of supporting general file managermnent utilities.

. Note that if a logical file is copied to another storage set its SEQUENCE:-
NUMBER may have to change to satisfy the sequential position requirement for
the new storage set.

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

API RPxbb 96 WM 0732290 055bL858 L&L HH

6-8 APl RECOMMENDED PRACTICE 68, V2

9.2 Origin

9.2.1 ORIGIN objects contain information used to identify and distinguish logical files
and establish the context for interpreting and distinguishing other objects. Every logical
file shall have at least one ORIGIN object that immediately follows the FILE-HEADER
and may have additional ORIGIN objects as required, not necessarily contiguous with the
first. The first ORIGIN object in a logical file is called the defining origin.

9.2.2 Atwributes FILE-ID, FILE-SET-NAME, FILE-SET-NUMBER, FILE-NUMBER,
FILE-TYPE, and CREATION-TIME are used for logical file identification. With high
probability (based on the effectiveness of random number generators), it should suffice to
use only FILE-SET-NUMBER and FILE-NUMBER from the defining origins to
distinguish two logical files having different content,

9.2.3 Every object in a logical file shall have an origin subfield in its object name that
matches exactly one ORIGIN object in the same logical file. Except for FILE-HEADER
and ORIGIN, any object must follow the ORIGIN object it references. This rule implies
that all ORIGIN objects in the same logical file must have distinct origin subfield values.

9.2.4 An object may originate in the logical file in which it is contained, or it may
represent a copy of part or all of an object that originated in another logical file. The
logical file in which an object originates is called its parent file. The parent file of the
defining origin is the file in which it is contained. Other ORIGIN objects may have
different parent files. The parent file of an ORIGIN object is the one for which the
attributes FILE-ID, FILE-SET-NAME, FILE-SET-NUMBER, FILE-NUMBER, FILE- .

TYPE, and CREATION-TIME match those of the defining origin. The parent file for any
other object is the same as for the ORIGIN object il references.

9.2.5 When objects are copied, some origin subfield values may have to change to
preserve the distinctness rule stated in 9.2.3, Thus, origin subfield values need not be
preserved by copy operations,

The process of changing origin subfield values during copy or merge opera-
tions is called origin translation. The primary rule is referential consistency.
Whenever a copied ORIGIN object requires origin transiation, then all other
objects that reference it in the source logical file must, if copied, have the same
origin translation applied. Furthermore, any attributes that have otigin values
{e.q., OBNAME) must also be franslated.

The following strategies can help reduce the need for origin translation: First,
unless unavoidable, write alt ORIGIN objacts immediately after the FILE-
HEADER. This helps edit applications, which must create a new defining origin
for the adited output, to select an origin value distinct from the source origin val-
ues. An edit application, of course, must be prepared to encounter additional
origins later in the file and handle possible origin transiation If there is a conflict.
Howevaer, if the source file has written all origins at the front, the need for trans-
lation will not arise.

Second, generate origin values randomly to reduce the probability that two log-
ical filas being merged into a third will have duplicate origin values.

9.2.6 No schema other than this basic schema may define an object type called .
ORIGIN.

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

API RPxbb 9b EE D?32290 055kLA59 5148 WH

EXPLORATION AND PRODUCTION DATA DIGITAL INTERCHANGE, PART 6: BASIC SCHEMA

9.2.7 The rules in 9,2.1 through 9.2.6 are required of all schemas.

9.2.8 Table 6-3 describes the attributes of ORIGIN objects.

Table 6-3 — ORIGIN Attributes

*Note Adttribute Label Restrictions
DESCRIPTION c=1, r=ASCII, u=
1 FILE-ID c=1, r=ASCII, u=
2 FILE-SET-NAME ¢=1, r=IDENT, u=
3 FILE-SET-NUMBER c=|, r=ULONG, u=
4 FILE-NUMBER c=I, r=ULONG, u=
5 FILE-TYPE c=1, r=IDENT, u=
6 CREATION-TIME ¢=I, r=DTIME, u=
7 SCHEMA-CODE ¢=1, =ULONG, u=
8 SCREMA-ORGANIZATION ¢=1, =ASCII, u=
9 SCHEMA.-EDITION u=
10 SCHEMA-DICTIONARY-EDITION u=
11 UNIT-MODEL-CODE ¢=], r=ULONG, u=
12 UNIT-MODEL-NAME ¢=1, r=IDENT, u=
13 UNIT-MODEL-EDITION u=
14 UNIT-SYMBOLS-EDITION u=
15 NAMESPACE-CODE ¢=1, r=ULONG, u=
16 NAMESPACE-NAME c=1, r=IDENT, u=
17 NAMESPACE-ORGANIZATION ¢=1, r=ASCII, u=
18 NAMESPACE-EDITION u=
19 REMARK c=1, r=ASCII, u=
. 20 CONTEXT c¢=1, =OBJREF, u=
*Notes:

1. FILE-IDy is an exact copy of the FILE-HEADER:1D attribute of the parent file. This attribute is required.

2. FILE-3ET-NAME is the name of a file set, a group of logical files to which the parent file belongs. The
logical files in a file sel are related according to implementation-defined criteria.

3. FILE-SET-NUMBER is a random number used to identify a file set. This atiribute is required.

4. FILE-NUMBER identifies the parent file within a file set. It is a positive integer that represents the relative
chronological order in which the logical file was created in the file set. The earliest logical file in a file set may
have any positive file number. Any other logical file in the file set must have a file number that is greater than that
of any earlier logical file in the same file set, Although file numbers are distinct in a file set, they are not required
to be distinct in a storage set. This attribute is required.

5. FILE-TYPE is an implementation-defined name that identifies the general contents of the parent file or the
circumstances under which the parent file was created.

6. CREATION-TIME is the date and time at which the parent file was created. This should be a time close to
when the FILE-HEADER was written. This attribute is required.

7. SCHEMA-CODE is the organization code (see Appendix A} of the organization responsible for defining
the object types, other than FILE-HEADER and ORIGIN, having this origin. This attribute is required.

8. SCHEMA-ORGANIZATION is the name of the organization assigned the code specified in SCHEMA-
CODE.

9. SCHEMA-EDITION is the edition of the document describing the schema or schema derivation
methodology corresponding to SCHEMA-CODE.

10. SCHEMA-DICTIONARY-EDITION is the edition of the dictionary of reference values used by attributes
of the schema corresponding to SCHEMA-CODE.

11, UNIT-MODEL-CODE is the organization code (see Appendix A} of the organization responsible for
defining the unit mode] used by objects having this origin.

12, UNIT-MODEL-NAME is the name of the unit model used by objects having this origin.

13, UNIT-MODEL-EDITION is the edition of the document describing the unit model used by objects having
this origin.

14. UNIT-SYMBOLS-EDITION is the edition of the document describing the unit symbols used by objects
having this onigin.

15. NAMESPACE-CODE is the organization code (see Appendix A) of the organization responsible for
. administering the dictionary of object names used by objects having this origin.

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

API RPxbb 9b Wl 0732290 055L8L0O 23T W

6-10 AP| RECOMMENDED PRACTICE 66, V2

Table 6-3 — ORIGIN Attributes (Continued)

16. NAMESPACE-NAME is the name of the dictionary of object names for objects having this origin.

17. NAMESPACE-ORGANIZATION is the name of the organization assigned the code specified in
NAMESPACE-CODE.

18. NAMESPACE-EDITION specifies the edition of the dictionary in which dictionary-controlled object
names are administered for this origin,

19. REMARK is an optional remark applicable to objects having this origin,

20. CONTEXT is a reference to an object defined under the schema specified in SCHEMA-CODE. The
referenced object has attributes that establish additional context for interpreting the data having this origin. To
allow multiple ORIGIN objects to share a context, the referenced object may have an origin different from this
one so long as the corresponding schema code is the same,

Since FILE-HEADER and ORIGIN are required in any implementation, most
logical fites will have a minimum of two ORIGIN objects, one for the basic
schema, and one for the industry schema that covers the daia of interest. In
some cases the basic schema alone may suffice fo exchange meaningful data.

Decilaration of required attributes is intentionally very selective. Whenever pos-
sible this decision is delegated to organizations that use APl Recommended
Practice 66. Nevertheless, most non-required attribttes should be viewed as
important to making full sense of the dala.

10 Optional Object Types

10.1 Axis

10.1.1 An AXIS object describes one coordinale axis of an array. AXIS objects shall be
used in conjunction with a DIMENSION attribute (see 8). The extent of the array along
the coordinate axis, i.e., number of coordinate values, is determined by a DIMENSION
attribute. Additional information provided by the AXIS object includes explicit coordinate
values, coordinate axis units, and spacing between computed coordinate values.

10.1.2 When the array is a channel value (see 10.2), its coordinates may be modulated
from frame to frame by reference to another channel value that provides dynamic
coordinate values.

For example, a seismic trace may be represented as a 1-dimensional array
along a time coordinate and written as a channel value described by
CHANNEL object TRACE. From trace fo trace (frame fo frame), the initial time
coordinate of the trace may change, although the trace sampile interval remains
fixad, e.g., at 4 ms. The initial time can be written as a companion channel in
the same frame type, described by CHANNEL TRACE_START_TIME. A
corresponding AXIS object may then specify SPACING = 4 ms and
COQORDINATES = TRACE_START_TIME.

Table 6-4 — AXIS Attributes

*Note Attribute Label Restrictions
DESCRIPTION c=1, r=AS8CII, u=
EXTENDED-ATTRIBUTES r=0BJREF, v=

1 AXIS-ID c=1, r=IDENT, u=, v={see note)
2 COORDINATES r=(see note)

3 SPACING c=1, r=(see nole) .

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

API RP*bb 9b EB 0732290 053bAabl 176 W

EXPLORATION AND PRODUCTION DATA DIGITAL INTERGHANGE, PART 6: BASIC SCHEMA

. Table 6-4 — AXIS Attributes (Continued)

*Notes:

1. AXIS-ID is a dictionary-controlled reference value identifying the coordinate axis. Valid identifiers are
administered in the dictionary specified by the NAMESPACE-CODE and NAMESPACE-NAME attributes of the
object’s origin, There are currently no reference values defined under the basic schema.

2. COORDINATES specifies coordinate values along the axis, which may be either textual (for labels) or
aumeric. Compound representation codes are prohibited except for OBNAME. When r=OBNAME, then
COORDINATES is the name of a single CHANNEL object whose value may be textual or numeric.
COORDINATES may reference a CHANNEL object only if the described array is a channel value and both the
array and referenced channel are in the same frame type. When the number of coordinate values specified by
COORDINATES is less than the extent of the array as derived from the companion DIMENSION artribulte, then
subsequent coordinate values are computed in SPACING increments from the last coordinate value.

3. SPACING specifies a constant, signed, spacing along the axis between successive coordinates, beginning at
the lust coordinale value specified by COORDINATES. If COORDINATES is absent, then regularly-spaced
coordinate values are implied beginning at zero (0) and separated by the declared spacing. Textual and compound
representation codes are prohibited except for OBNAME. When r=OBNAME, then SPACING is the name of a
single CHANNEL object whose value shall be numeric and have only one element. SPACING may reference a
CHANNEL object only if the described array is a channel value and both the aray and referenced channel are in
the same frame type.

10.2 Channel

10.2.1 A CHANNEL object describes an instance of a channel. A channel is a named

sequence of measured or computed values typically associated with an index such as depth

or time. Channel values are recorded in frames (see 10.5). The CHANNEL object

identifies the channel instance and specifies its representation in the frame. Channel values

are similar to attribute values in that they consist of zero or more elements, all having the

same units and representation code. The count, units, and representation code of a channel
. value are provided by its associated CHANNEL object.

Table 6-5 — CHANNEL Attributes

*Note Attribute Label Restrictions
DESCRIFTION c=1, r=ASCIl, u=
EXTENDED-ATTRIBUTES r=0OBJREF, u=
| KIND c=1, I=ASCI11 TASCII, u=, v=(see note)
2 PROPERTIES r=IDENT | TIDENT, u=, v=(see note)
3 FLAGS r=IDENT | TIDENT, u=, v=(see note)
4 REPRESENTATION-CODE ¢=1, r=USHORT, u=
5 FIXED-SIZE-IN-BYTES c=1, r=ULONG, u=
6 UNITS c=1, r=UNITS, u=
7 DIMENSTION r=ULONG, u=
8 DIMENSION-LIMIT ¢=1, r=ULONG, u=
9 AGGREGATE r=ULONG, u=
10 AGGREGATE-LIMIT c=1, r=ULONG, n=
11 ELEMENT-LIMIT c=L, =ULONG, u=
12 SOURCE c=1, r=0OBJREF
13 AXIS r=0BNAME, u=
14 ABSENT-ELEMENT e=l
15 SPACING
16 DIRECTION c=1, r=IDENT | TIDENT, u=, v=(see note)
17 MINIMUM-VALUE
18 MAXIMUM-VALUE
*Notes:
1. KIND is a dictionary-controlled reference value that describes a general classification of the channel. Finer
. differentiation of the channel is provided by its identifier. Currently there are no reference values defined under
the basic schema,

2. See Table 6-

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

API RPxbLt 9 W 0732290 055LAaLe 002 WM

8-12 AP| RECOMMENDED PRACTICE 66, V2

Table 6-5 — CHANNEL Attributes (Continued) .

3. FLAGS is a dictionary-controlled list of reference values that describe recording options for the channel.
Reference values are listed in Part 7.

4. REPRESENTATION-CODE is the representation code used to write each element of a channel value, This
attribute is required.

5. FIXED-SIZE-IN-BYTES declares a fixed number of byies used to write each element of a channel value
which has a variable-length representation code. This attribute may be used only if the representation code has an
ASCII or IDENT subfield. When used, it is a guaraniee that every element is written using the declared number
of bytes. When the actual value of an element is shorter, one or more of the ASCII or IDENT subfields will be
padded (using a null delimiter) to achieve the declared length.

6. UNITS is the unit of each element of a channel value. The unit model is obtained from the channel object’s
origin. If absent, the value is considered to be unitless.

7. DIMENSION describes the structure of a channel value (see Table 6-1). When both DIMENSION and
AGGREGATE are absent and the channel is not explicitly-sized (see Part 7), each channel value is assumed to
have one element.

8. DIMENSION-LIMIT declares the upper value of the dimension descriptor count of the channel when the
channel is explicitly sized (see FLLAGS). In any frame, count may either be zero, in which case the channel value
is absent from the frame, or it may equal DIMENSION-LIMIT. A channel is not allowed to change
dimensionality other than to become absent. DIMENSION and DIMENSION-LIMIT are mutually exclusive. If
one is present, the other shall be absent.

9. AGGREGATE describes the structure of a channel value (see Table 6-1). When both DIMENSION and
AGGREGATE are absent and the channel is not explicitly-sized (see Part 7), each channel value is assumed to
have one element.

10. AGGREGATE-LIMIT declares a limit on the count of the aggregate descriptor of the channel when the
channel is explicitly sized (see FLAGS). The count shall not exceed this limit and may or may not reach it.
AGGREGATE and AGGREGATE-LIMIT are mutually exclusive. If one is present, the other shali be absent.

11. ELEMENT-LIMIT is a limit on the total number of elements per value (i.e., per frame) of the channel when
explicitly sized (see FLAGS). The number of elements per value shall not exceed this limit and may or may not
reach it. This attribute shall be absent if the channel is not explicitly-sized.

12. SOURCE is a reference to another object, for example a PROCESS object, that deseribes the immediate
source of the channel.

13. AXIS is a list of references to AXIS objects that describe the channel value (see Table 6-1). When AXIS
and DIMENSION are both present, they shall have the same count. That is, there shall be one AXIS object
reference for each coordinate axis of the channel value. When AXIS is present and the channel is explicitly sized,
then AXIS count shall equal the value of DIMENSION-LIMIT.

i4. ABSENT-ELEMENT has a single element which shall have the same units and representation code as
the channel value, Any channel value element that matches this attribute is considered to be absent, i.e., not
valid for use.

15. SPACING declares a fixed signed spacing between channel values in successive frames for all frames of the
frame type. It need not have the same units or representation code as the channel value. However, it shall have the
saime number of elements, and there shall be a units conversion s = >s” such that s” = v(r) = v(n = 1) for all frame
numbers # > |, where s is the value of SPACING and v(a) is the channel value in frame n. This attribute does not
apply to explicitly-sized channels and shall not be present if the channel is explicitly-sized (see FLAGS). If the
channel value has more than one element, then corresponding clements are uniformly spaced.

16. DIRECTION is a dictionary-controlled reference value that provides qualitative information about the
behavior of the channel value as a function of frame number. When the channel has more than one element, the
behavior applies on an elemeni-by-element basis. Reference values are listed in Part 7.

17. MINIMUM-VALUE is the minimum channel value for all frames of the frame type, If the channel value
has more than one element, it is an element-by-element minimum. That is, each element of this attribute is the
minimum of the corresponding channel value element for all frames in the frame type.

18. MAXIMUM-VALUE is the maximum channel value for all frames of the frame type. If the channel value
has more than one element, it is an element-by-element maximum. That is, each element of this attribute is the
maximum of the corresponding channel value element for all frames in the frame type.

API Recommended Practice 66, Version 1 had a FRAME:INDEX-TYPE
attribute which applied only to the index channel and has been dropped in this
edition. KIND provides the same fealure for any channel, regardless of use as
an index.

The main usefuiness of SPACING is to describe channels used as regular

indexes, which have no need to change size. If it were to apply to explicitly-

sized channels it would need to be updatable, which would make for very

cumbersome rules on how to maintain a constant spacing when spacing can

change. .

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

API RPxbh 9b EB 0732290 0556863 Tu9 W

EXPLORATION AND PRODUCTION DATA DIGITAL INTERCHANGE, PART 6: BASIC SCHEMA

. in contrast to ABSENT-ELEMENT, which is essentially always used internally
(i.e., by the computer), SPACING is frequently of interest to the end user, and
some latitude is given to allow it to be presented in a friendllier form than the
channe! value, namely to have different though compatible units and
represeniation code.

10.3 Comment

10.3.1 A COMMENT object carries arbitrary textual information considered interesting
1o the consumer.

Table 6-6 — COMMENT Attributes

~ *Note Attribute Label Restrictions
DESCRIPTION c=1, =ASCH, u=
EXTENDED-ATTRIBUTES r=0OBJREF, u=
H TEXT c=l, r=ASCII, u=
*Notes:

1. TEXT contains arbitrary text,

10.4 Computation

10.4.1 A COMPUTATION object is similar to a PARAMETER object except that
VALUES is considered to be the result of a computation using other recorded data.
Consequently, a COMPUTATION may have PROPERTIES, and the data used to compute
VALUES may be identified by SOURCE.

. Table 6-7 — COMPUTATION Attributes
*Nole Attribute Label Restrictions

DESCRIPTION c=1. =AS8CIlL, u=
EXTENDED-ATTRIBUTES r=0BJREF, p=
PROPERTIES r=IDENT I TIDENT., u=, v=(see Table 6-1)

1 KIND c=1, r=ASCII | TASCII, u=, v=(see note)

2 DIMENSION r=ULONG, u=

3 AGGREGATE r=ULONG, u=

4 AXIS =0BNAME, u=

5 ZONES r=0BNAME, u=

6 VALUES

7 SOURCE ¢=1, =0BJREF, u=

*Notes:

1. KIND is a dictionary-controlled reference vatue that describes a general classification of the computation.
Finer differentiation of the computation is provided by its identifier. Currently there are no reference values
defined under the basic schema.

DIMENSION is the same as PARAMETER:DIMENSION.

AGGREGATE is the same as FPARAMETER . AGGREGATE.

AXIS is the same as PARAMETER:AXIS.

ZONES is the same as PARAMETER:ZONES.

VALUES is the same as PARAMETER: VALUES.

. SOURCE is a reference to another object that describes the immediate computational source of data
recorded in this object.

Np s mN

A typical SOURCE for a COMPUTATION object is a PROCESS object.

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

API RPxbb 9b EM 0732290 O055kLA8LY 985 EH

6-14 APl RECOMMENDED PRACTICE 66, V2
10.5 Frame
frame block
| data descriptor reference | OBNAME
[IFLR modifier | usHorT
| number of frames (5) | ULONG
[frame numbers (16, ..., 20) | array of ULONG
| size descriptors | arrays of ULONG channel value
recording | channel A B c D E /
sequence
i : frame 16
frame 17
L Brisidnaiies i+ frame 18
£ 111 s | frame 19
I 1| Bl | | B3 frame 20

The width of sach channel value illustrates the number of elements per value.

Figure 6-2—A Frame Block

10.5.1 A FRAME object describes a frame type, which is a sequence of one or more
frames written in one or more frame blocks (see Table 6-2). A frame block may contain
one or more frames. A frame block is an IFLR for which the data descriptor reference is
the name of a FRAME object. The layout of data in a frame and its frame block is deter-
mined by information in the referenced FRAME object. The frame block IFLRs of a frame
type are not required to be contiguous and may be intermixed with other logical records.

10.5.2 Conceptually, a frame is a set of channel values (see 10.2) occurring in the same
order that their corresponding CHANNEL objects are listed in the CHANNELS attribute.
Each channel represented in a frame block has one value per frame. Its values are written
contiguously, followed by the values of the next channel, and so on. The first value of a
channel belongs to the first frame in the frame block, the second value to the second
frame, and so on, The maximum number of frames allowed per frame block is declared by
attribute FRAMES-PER-IFLR-LIMIT or is assumed to be 1 if this attribute is absent. The
actual number of frames in a frame block is written immediately following the IFLR
modifier and has representation code ULONG.

10.5.3 Each frame has a frame number. The frame numbers of all the frames in a frame
block are written together in order immediately following the number of frames value and
have representation code ULONG.

10.5.4 A channel shall have the same number of elements per value for all frames of a
frame type unless its CHANNEL object declares the value to be explicitly-sized via its

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

API RPxbb 9t EE 0732290 055LALS 811 WW

EXPLORATION AND PRODUCTION DATA DIGITAL INTERCHANGE, PART 6: BASIC SCHEMA 6-15

. FLAGS attribute. When one or more channels in a frame type are explicitly-sized, then
each frame block will have channel value size information written immediately following
the frame numbers array. Channel value size information applies only to the current frame
block and is written in the form of dimension or aggregate descriptors, which are arrays of
ULONG values (see Part 7). Only descriptors of explicitly-sized channels are written, and
they are written in the same order as the channel values.

10.5.5 The first channel value immediately follows the size descriptors. If there are no
size descriptors it follows the last frame number.

10.5.6 A frame type represents a grouping of channels having the same number of
values (where a value may be a simple element or an array having many elements) and
sharing one or more common indexes. A frame, being a selection of the nth value from
each channel, represents a sampling of the channels at a given index value. One common
index, for example, is frame number, which corresponds to sample number. Often a more
meaningful index, for example time or depth, is provided as one of the channels in the
frame type. Multiple indexes are possible this way.

10.5.7 The FRAME object supports an additional implicit indexing mechanism. By
means of its DIMENSION and AXIS attributes, the FRAME object may define an array
representing the points of a grid having one or more coordinate axes (see Figure 6-3). The
grid may be used as an indexing domain whose points are associated with frames by
means of the frame number. The grid may be bounded or unbounded. If DIMENSION and
AXIS have the same counti, the grid is bounded. AXIS count is allowed to be one greater
than DIMENSION count, provided the last referenced AXIS object has numeric

. COORDINATES and non-zero SPACING, in which case the grid is unbounded along the
last coordinate. The mapping of frame number to grid follows the pattern for dimensioned
arrays specified in 8.1.2. Note that this patiern also applies when the last coordinate is
unbounded (i.e., when DIMENSION count is one less than AXIS count). DIMENSION
may be absent or have count = O when AXIS count = 1, which represents the simplest
unbounded grid: a I-dimensional array. If the grid is bounded and frame number exceeds
its extent, then mapping should wrap back to the beginning of the grid.

AX1S-2
TYPE = TIME
COORDINATES = {0, 200} ms
SPACING = 100 ms

: : M frame number

13 14 15
500

¢ ¢ DIMENSION = {3}
200 - 10 o' o' AXIS = [AXIS-1, AXIS-2}
300-¢7 @2 @°
20044 @ ob
1y 5 3 AXIS-1

o & -& TYPE = SAMPLE-MODE

A B C COORDINATES = {A, B, C}

. Figure 6-3—An Unbounded Grid of Frame Type Indaxes

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

API RP*bb AL HH 0732290 055b8bb 756 EM

6-16 APi RECOMMENDED PRACTICE 66, V2

10.5.8 Table 6-8 describes the auributes of a FRAME object,

Table 6-8 — FRAME Attributes

*Note Attribute Label Restrictions
DESCRIPTION c=l, r=AS8CIl, u=
EXTENDED-ATTRIBUTES r=0BJREF, u=

I FLAGS r=IDENT | TIDENT, u=, v=(see note)
2 CHANNELS =0BNAME, u=
3 FRAMES-PER-IFLR-LIMIT c=1, r=ULONG, u=
4 MIN-FRAME-NUMBER c=1, r=ULONG, u=
5 MAX-FRAME-NUMBER ¢=1, r=ULONG, u=
6 NUMBER-OF-FRAMES ¢=1, =ULONG, u=
7 DIMENSION r=ULONG, u=
g AXIS r=OBNAME, u=
*Notes:

1. FLAGS is a dictionary-controlled list of reference values that describe recording options for the frame type.
Reference values are listed in Pant 7.

2. CHANNELS is a list of references to CHANNEL objects that describe the channel instances in the frame
type. Channels occur in the frame type in the same order their corresponding CHANNEL objects are listed in this
attribute. This attribute is required.

3. FRAMES-PER-IFLR-LIMIT is the maximum number of frames per IFLR (i.c., per frame block) for this
frame type. If absent, | is assumed. If present, it shall be a positive integer.

4. MIN-FRAME-NUMBER is the minimum frame number for the frame type. It may be greater than 1.

5. MAX-FRAME-NUMBER is the maximum frame number for the frame type.

6. NUMBER-OF-FRAMES is the total number of frames written for the frame type.

7. DIMENSION describes the bounded portion of a grid used as an indexing domain for the frame type (see
10.5.7).

8. AXIS is a list of references 10 AXIS objects that describe a grid used as an indexing domain for the frame

type {see 10.5.7). AXIS count must be at least as big as DIMENSION count and may be one greater. If AXIS

count = DIMENSION count, the indexing grid is bounded. Otherwise, the indexing grid is unbounded. .

When both MIN-FRAME-NUMBER and MAX-FRAME-NUMBER are present,
then NUMBER-OF-FRAMES may be derived only if FLAGS doees not doclare
frame numbers to be UNORDERED.

10.6 Group

10.6.1 A GROUP object describes an application-defined grouping of other objects.
Table 6-9 — GROUP Attributes

*Note Attribute Label Restrictions
DESCRIPTION c=1, r=ASCII, u=
EXTENDED-ATTRIBUTES r=0BJREF, u=

1 OBJECT-TYFE ¢=1, r=IDENT | TIDENT, u=
2 OBJECT-LIST r=OBJREF, u=
3 GROUP-LIST r=0BNAME, u=

*Noles:

1. OBJECT-TYPE specifies the object type referenced by OBJECT-LIST when OBJECT-LIST has
representation code OBNAME (which belongs to the same class as OBJREF).

2. OBIECT-LIST is a list of references to objects that belong to the group.

3. GROUP-LIST is a list of references to other GROUP objects, which are used to extend the membership of
the current GROUP object.

10.7 No-Format

10.7.1 A NO-FORMAT object identifies IFLRs that contain unformatted data, i.e., for .
which no format description is provided other than a name.

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

-

API RPxbE 96 EE 0732290 055b&L7 L9y WHE

EXPLORATION AND PRCDUCTION DATA DIGITAL INTERCHANGE, PART 6; BASIC SCHEMA

6-17

10.7.2 Each IFLR having the name of a given NO-FORMAT object as its data
descriptor reference contains a part of the unformatted data as the remainder of the logical
record body following the IFLR. modifier. The original data may be recovered by reading
the IFLRs containing the data parts in the same order in which they were written and the
bytes of each part as though they were USHORT.

Table 6-10 — NO-FORMAT Attributes

*Note Attribute Label Restrictions
DESCRIPTION c=1, r=ASCIL, u=
EXTENDED-ATTRIBUTES r=0DBJREF, u=

| CONSUMER-NAME c=1, r=ASCIl, u=
*Noles:

. . CONSUMER-NAME is a user-provided name for the data, for example an external file specification.

10.8 Origin-Translation

10.8.1 An ORIGIN-TRANSLATION object is used to maintain an origin translation

table for encrypted logical records (see Part 2). ORIGIN-TRANSLATION sets shall not
be encrypted.

10.8.2 When a logical file has encrypted records, either EFLR or IFLR, one or more
ORIGIN-TRANSLATION objects shall be written that contain the origin values used in
the encrypted records. An encrypted record contains a translation tag in its first logical
record segment header. This tag is the name of an ORIGIN-TRANSLATION object. The
referenced object, which shall be present in the same logical file, shall contain all distinct
origin values used in the encrypted record. When a data editing or merge operation
requires origin translation and the encrypted record is copied without first being
decrypted, the origin values it contains cannot be translated. However, if there is an
ORIGIN-TRANSLATION object, its TRANSLATED-ORIGINS may be translated, and
HIDDEN-ORIGINS preserved. In addition, the origin value in the translation tag may be
translated if necessary to preserve the reference to its ORIGIN-TRANSLATION object.
Subsequently when the edited or merged data is read by an application that can decrypt the
encrypted record, its origins can be translated at that time using the appropriate ORIGIN-
TRANSLATION object. At the same Lime, the HIDDEN-ORIGINS may be translated
simply by replacing them with the corresponding TRANSLATED-QORIGINS values.

Table 6-11 — ORIGIN-TRANSLATION Attributes

*Note Attribute Label Restrictions
DESCRIPTION c=1, r=ASCIl u=
EXTENDED-ATTRIBUTES r=0BJREF, u=

I HIDDEN-ORIGINS r=ULONG, u=
2 TRANSLATED-ORIGINS r=0RIGIN, u=
*Notes:

I. HIDDEN-ORIGINS is a list of untranslated origin values that may be in encrypted records.
2. TRANSLATED-ORIGINS is a list of translated origin values corresponding to HIDDEN-ORIGINS.

10.9 Parameter

10.9.1 A PARAMETER object describes a parameter that may consist of a single
unzoned value or may consist of one or more zoned values. An unzoned value has no
domain. It is globally defined. A zoned value is defined only in a specific domain
described by a corresponding ZONE object (see Table 6-15).

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

API RPxbb 9b EM 0732290 D55babL& 520 WM

6-18 AP| RECOMMENDED PRACTICE 66, V2

Table 6-12 — PARAMETER Attributes

*Note Attribute Label Restrictions
DESCRIPTION e=1, r=ASCII, v=
EXTENDED-ATTRIBUTES r=0BJREEF, u=

| KIND c=1, r=ASCII I TASCII, u=, v=(see note)
2 DIMENSION r=ULONG, u=
3 AGGREGATE r=ULONG, u=
4 AXIS r=OBNAME, u=
5 ZONES r=0BNAME, u=
6 VALUES
*Notes:

1. KIND is a dictionary-controlled reference value that describes a general classification of the parameter.
Finer differentiation of the parameler is provided by its identifier. Currently there are no reference values defined
under the basic schema.

2. DIMENSION specifies the structure of each of one or more values in VALUES (see Table 6-1).

3. AGGREGATE specifies the structure of each of one or more values in VALUES (see Table 6-1).

4. AXIS applies to each of one or more values in VALUES (sec Table 6-1).

5. ZONES is a list of references to ZONE objects that specify mutwally exclusive domains in which
corresponding parameter values are defined. When ZONES is absent, the parameter is unzoned. When ZONES is
present its count shall be positive.

6. VALUES consists of zero or more parameter values. The extent of each value (i.¢., number of eclements) is
determined by DIMENSION or AGGREGATE. If both are absent, each value has one element. If the parameter
is zoned and VALUES count > 0, then the number of values is given by ZONES count. VALUES may have count
= 0, in which case it is described by its characteristics and the other attributes (including ZONES, which may
have non-zero count), but it has no values. This attribute is required.

10.10 Process

10.10.1 A PROCESS object describes a process by which other data was acquired or
computed, including declarations of input data, output data, and parameters.

Table 6-13 — PROCESS Attributes

*Note Attribute Label Restrictions
DESCRIPTION c=1, r=ASCII, u=
EXTENDED-ATTRIBUTES r=0BJREF, u=
PROPERTIES r=IDENT { TIDENT, u=, v={see Table 6-1)

1 KIND e=I1, r=ASCII | TASCII, u=, v=(5¢¢ note)
2 TRADEMARK-NAME c¢=1, r=ASCII, u=

3 VERSION c=I, r=ASCII, u=

4 STATUS c=I|, r=IDENT. u=, v=(sec note)
5 INPUT-CHANNELS r=OBNAME, u=

6 OUTPUT-CHANNELS r=0BNAME, u=

7 INPUT-COMPUTATIONS r=OBNAME, u=

8 OUTPUT-COMPUTATIONS r=0BNAME, u=

9 PARAMETERS r=QOBNAME, u=

10 COMMENTS r=ASCIlL u=

*Notes:

I. KIND is a dictionary-controlled reference value that describes a general classification of the process. Finer
differentiation of the process is provided by its identifier. Currently there are no reference values defined under
the basic schema.

2. TRADEMARK-NAME is the name used by the producer to refer to the process and its products.

3. VERSION is the producer’s software version of the process.

4, STATUS is a reference value indicating status of the process at the time this object was written (see Part 7).
5. INPUT-CHANNELS is a list of references to CHANNEL objects that describe channels used directly by

this process.

6. OUTPUT-CHANNELS is a list of references 10 CHANNEL objects that describe channels produced .
directly by this process. The same CHANNEL object shall not appear in the OUTPUT-CHANNELS attributc of

more than one PROCESS cbject in the same logical fle.

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

API RPxbkb 9b EE 0732290 055bL8LY 4L7? HE

EXPLORATION AND PRODUCTION DATA DIGITAL INTERCHANGE, PART 6: BASIC SCHEMA 6-19

. Table 6-13 — PROCESS Attributes (Continued)

7. INPUT-COMPUTATIONS is a list of references to COMPUTATION obijects that describe computed
results used direcdy by this process.

8. OUTPUT-COMPUTATIONS is a list of references 1o COMPUTATION objects that describe computed
results produced disectly by this process. The same COMPUTATION object shall not appear in the OUTPUT:
COMPUTATIONS attribute of more than one PROCESS object in the same logical file.

9. PARAMETERS is a list of references to PARAMETER objects that describe parameters used directly by
this process or that affect the operation of this process. PARAMETER objects may appear in the PARAMETERS
attribute of more than one PROCESS object in the same logical file,

10. COMMENTS contains textual information about the process.

10.11 Update

10.11.1 An UPDATE object is used to indicate a change in the value of an attribute
previously written in the same logical file. Not all attributes may be updated, since

managing updates in general can be costly. Updatable attributes of the basic schema are
listed in Table 6-16.

10.11.2 When present, attributes TIME, FRAME-TYPES, and FRAME-NUMBERS
indicate when the change takes effect, in which case the attribute is considered to have the
new value beginning at some lime or point in the data and the old value prior to that point.
In this case, the UPDATE object shall be written so that its new value applies only to data
that follows it (but not necessarily to all data that follows it). When TIME, FRAME-
TYPES, and FRAME-NUMBERS are all absent, then the meaning and use of the update
is application-defined.

. Table 6-14 — UPDATE Attributes
*Note Attribote Label Restrictions

DESCRIPTION c=1, r=ASCIl, u=
EXTENDED-ATTRIBUTES r=0OBJREF, u=

1 ATTRIBUTE ¢=1, r=ATTREF, u=

2 NEW

3 OLD

4 TIME c¢=1, =DTIME | FDOUBL

5 FRAME-TYPES r=OBNAME, u=

6 FRAME-NUMBERS r=ULONG, u=

7 COMMENT c=}, r=ASCIl, u=

*Notes:

I. ATTRIBUTE is the attribute being updated. This artribure is required.

2. NEW is the new value of ATTRIBUTE. NEW may be absent, but OLD and NEW shall not both be absent.
3. OLD is the previous value of ATTRIBUTE. OLD may be absent, but OLD and NEW shall not both be
absent.

4. TIME indicates when the change takes effect. Unless r=DTIME, this is an elapsed time from
ORIGIN:CREATION-TIME. The attribute has the new value starting at the specified time and the old value prior
to it

5. FRAME-TYPES is a list of names of one or more FRAME objects representing frame types to which the
update is correlated.

6. FRAME-NUMBERS is a list of one or more frame numbers indicating for each frame type in FRAME-
TYPES at which frame the change takes effecl. The auribute has the new value starting at the specified frame

number and the old value for earlier frame numbers. Count of this artribute shall match count of FRAME-
TYPES.

7. COMMENT is additional textual information associated with the update.

The UPDATE object type has been considerably simplitied from APl Recom-
mended Practice 66, Version 1. All welf log related attributes have been
removed along with TAG-CHANNEL and TAG-VALUE. The laiter were consid-
ered unnecessary, since most applications are capable of determining frame
numbers from channel values and vice-versa. Note also in Table 6-16 that sev-

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

API RPxbb 9b HH 0732290 0556470 189 WA

6-20 AP| RECOMMENDED PRACTICE 66, V2

eral attribules previously declared updatable are no longer so. For some
afiributes, other mechanisms replaced the need for updates. Explicitly-sized
channels and the ability to reference channels from AXIS objects removed the
need to update altributes of CHANNEL and AXIS object types.

Neither QLD nor NEW is a required atiribute, since it is possible that an update
may be made with the intent of changing an absent attribute to a value or vice-

versa.
10.12 Zone
10.12.1 A ZONE object is used 10 identify an interval over which a value is defined or
valid.
Table 6-15 — ZONE Attributes
*Note Auttribuie Label Restrictions
DESCRIPTION c=1, r=ASCIL u=
EXTENDED-ATTRIBUTES r=OBJREF. u=
i DOMAIN c=1, r=IDENT i TIDENT, u=. v=(zec note)
2 MAXIMUM c=l
3 MINIMUM c=1
*Notes:

1. DOMAIN is a reference value that indicates the type of zone interval, There are currently no reference val-
ues defined under the basic schema. DOMAIN shall be consistent with the units and representation code of
MAXIMUM and MINIMUM. DOMAIN may be absent, in which case the units of MAXIMUM or MINIMUM
imply a generic domain.

2. MAXIMUM is the maximum value of the zone. This value is net included in the zone. When absent, the
zone is considered to extend indefinitely in the increasing direction.

3. MINIMUM is the minimum value of the zone. This value is included in the zone, When absent, the zone is
considered 1o extend indefinitely in the decreasing direction.

10.13 Updatable Attributes

10.13.1 Table 6-16 lists attributes of the basic schema that may be updated using

UPDATE objects.
Table 6-16 — Updatable Attributes
*Note Object Type Attribute Label
| PARAMETER VALUES
2 PROCESS STATUS
#*Notes:

I, The VALUES atrribute may be updated if and only if the parameter is unzoned, i.e., if and only if the
ZONES attribue is absent.
2. STATUS of a process may change during the course of acquiting or computing data written to a logical file.

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

API RPxbb 95 EE (0732290 055La71 015 HE

Recommended Practices for
Exploration and Production Data
Digital Interchange

Part 7: Basic Schema Dictionary

Exploration and Production Department

. APl RECOMMENDED PRACTICE 66, V2
SECOND EDITION, JUNE 1996

American
. L) Petroleum

Institute

—

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

—

2w N

API RPxbb 96 HR 0732290 0556472 TS5l HE

CONTENTS
Page
INTRODUCTION ..ottt sttt s re e tse sttt smomone s ssersvareresen s ssees 7-1
SCOPE ...t s sesrt s s sssess s st sas st sas e ess et seane st s e sesnataseseserenrasens
AUTHORITY ..o erreeees
CONCEPTScrirermenreiscnnte e
CHANNEL REFERENCE VALUES

4.1 DITeclionoceeveceiecivnmnineeeiiseerans

4.2 Flags v
FRAME REFERENCE VALUES
ST FIAES ettt st arsrr s e oo

PROCESS REFERENCE VALUES
6.1 Status

Tables
7-1—CHANNEL:DIRECTION Reference VAIUES ..ovveeeeeeeeeersssresssosessssesssssesssnnns 7-2
T-2— CHANNEL:FLAGS Reference VAIUES ...ococeeviecieererreersseersssosesesssssesssssssssssmsonns 7-2
T-3— FRAME:FLAGS Reference VAlUEScoccevreeimiirmiisceeisiearereseessosesesssesissoses 7-2
T-4—PROCESS:STATUS Reference VAIUEScccovveeeiveniieiiesesesenresseseosrememsssssessssses 7-3

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

—

API RPxbb 9b EE 0732290 0556473 99 WA

Recommended Practice for Exploration and Production
Data Digital Interchange
Part 7: Basic Schema Dictionary

0 Introduction

0.1 This standard contains introductory, normative, and annotative information.
Introductory information comprises everything that precedes Section 1, Scope. The
introductory clauses describe how the publication is organized and provide commentary on
the history and purpose of this standard. Normative information includes the actual
requirements that must be satisfied by any data conforming to the standard. Annotative
information is provided as rationale for and illustrations about the normative information and
does not constitute part of the standard. The standard is completely stated even if all
introductory and annotative information are removed. Annotative information may refer to
terms introduced in later paragraphs or parts in order to tie together concepts, i.e., from time
to time its value may increase after the reader has made a complete pass over the standard.

0.2 Different styles are used to distinguish between normative and annotative
information.

0.3 All normative information is written using this same font, and is contained in either
numbered paragraphs or numbered tables. Normative text is aligned with the left margin
of the page.

0.4 All figures are annotative, and all annotative text is written in unnumbered
paragraphs in Helvetica italic font, indented, as shown here:

This is a paragraph of annotative text, Its purpose is to include informal
cormmentary on the normative information in immediately preceding or
following paragraphs and may include references to or usage of normative
information in other parts of the standard.

1 Scope

This part lists and defines a dictionary of reference values for attributes belonging to the
basic schema (see Part 6).

2 Authority

Changes 1o the basic schema dictionary are recommended by the API Subcommittee On
Standard Format For Digital Well Data and approved by the Executive Committee on Drill-
ing and Production Practice of the API Exploration and Production Department. Changes
may include addition of new terms or removal of obsolete terms. A term removed in one edi-
tion may be restored in a later edition only if restored with its previous meaning. A new edi-
tion of the basic schema dictionary occurs when approved by the Executive Committee and
has an edition number obtained by adding 1 to the previous edition number.

3 Concepts
3.1 The tables presented here contain the various reference values defined for attributes

of the basic schema that have controlled values. There is one table per controlled attribute.
Each attribute is identified by its label preceded by the object type to which it belongs and

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

API RPxbb 9 EE 0732290 0556474 424 WA

7-2 APl RECOMMENDED PRACTICE 66, V2

separated by a colon (:). Reference values are listed alphabetically by object type first and
by attribute second.

3.2 All basic schema reference values use representation code IDENT.
4 Channel Reference Values
4.1 Direction

Table 7-1 -~ CHANNEL:DIRECTION Reference Values

Reference Value Description
DECREASING Channel value strictly decreases as frame number increases.
INCREASING Channel vaiue strictly increases as frame number increases.
NON-DECREASING Channel value does not decrease as frame number increases.
NON-INCREASING Channel value does not increase as frame number increases.
4.2 Flags

Table 7-2 — CHANNEL.:FLAGS Reference Values

Reference Value Description

EXPLICIT-SIZE When present, the channel is explicitly sized. In this case a dimension or
aggregate descriptor for the channel will be found at the beginning of each
frame block in which the channel value occurs. A dimension or aggregate
descriptor consists of a count followed by a standard DIMENSION or
AGGREGATE value, all written using representation code ULONG only. The
descriptor is recorded at the beginning of the frame block immediately follow-
ing the last frame number. 1f more than one channel is explicitly sized, then
descriptors are writlen in the same order as the explicitlysized channels in the
frames.

When a channel is explicitly-sized, then DIMENSION and AGGREGATE
attributes shall be absent from the CHANNEL object. Either DIMENSION-
LIMIT or AGGREGATE-LIMIT but not both shall be present to indicate the
the kind of descriptor and its maximum count for any frame in the frame type.
ELEMENT-LIMIT shall be present 1o indicate the maximum number of ele-
ments of the channel’s value for any frame in the frame type.

5 Frame Reference Values

5.1 Flags
Table 7-3 — FRAME:FLAGS Reference Values
Reference Value Description
ENCRYPTED IFLRs associated with the frame type are encrypted if and only if this value is
present.
INCREASING When present, frame numbers shall increase in the order in which frames

occur, but there may be gaps. The frame number of the first frame may be any
positive integer.

SEQUENTIAL When present, frame numbers shall increase sequentially (no gaps) in the order
in which frames are written. The frame number of the first frame may be any
positive integer. The frame number of any other frame shall be one greater than
the frame number of the previous frame.

UNORDERED When present, frame numbers may occur in any order.

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

API RPxbb 9L BB 0732290 0554875 760 HH

EXPLORATION AND PRODUCTION DATA DIGITAL INTERCHANGE, PART 7: BASIC SCHEMA DIGTIONARY

. 5.1.1 Flag values INCREASING, SEQUENTIAL, and UNORDERED are mutually
exclusive. If none are present, then SEQUENTIAL is assumed by default.

There are two reasons for having sequentially-ordered frame numbers. First, it
provides an indicator of when records have been losi—a frame number will be
observed missing. Second, it allows seeking frames by position without having
to count all frames in between.

On the other hand, it can be uselul to have unordered frames when using an
indexing hypergrid for the frame type {see Part 8). Since location on the
hypergrid is a function of frame number, unordered frame numbers allow
representation of different kinds of “cuts” through the hypergrid, as well as
dropouts and other irregularities.

6 Process Reference Values

6.1 Status
Table 7-4 — PROCESS:STATUS Reference Values
Reference Value Description
ABORTED The process was aborted.
COMPLETE The process completed.
IN-PROGRESS The process began but did not complete.

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

API RPxbb 9b W 0732290 055LA&7YL LT? W

Recommended Practices for
Exploration and Production Data
Digital Interchange

Part 8: DLIS Schema

Exploration and Production Department

. API RECOMMENDED PRACTICE 66, V2
SECOND EDITION, JUNE 1996

American
. L Petroleum

Institute

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

AT=JN- <IN - T I - B]

API RPxbtb A9b HE 0732290 055L477 533 EH

CONTENTS

SCOPEocoeeeeee.

AUTHORITYcccoceeeeee.

UNIT MODELccocivcrirnenns

DICTIONARY-CONTROLLED IDENTIFIERS ...

REQUIRED VS OPTIONAL USE OF ATTRIBUTES
FREQUENTLY-USED ATTRIBUTEScccorummimmnsnrmrmrenssssrstsboneesese e enenes

9.1 Calibration

9.2 Calibration-CoetliCIBNLcuveereiriniieieiereerest e reeeeeeereesasereesmeesessserensesenns
9.3 Calibration-MEeaSUIEITIEILcveeeeeeeereeeeeeresserstesei st eateas e s tem e e eeeeee s e eesreessons
9.4 DLISCONEEXT <oeveieiriiriiieinsiiestee oo ceerese e e eraseresessssssarasareentosssearesesssses
0.5 EQUIPMICNL c.coviviiimirenirirernssrineresereesesesarsrmssesesesasssmnsesesssesmsmenesermssenssessssssnssssas

9.6 MESSAZE .ot

97 Path

DB SPlICE ittt s s e e n et ab ettt st b b e e et ee e renenens

99 Tool ...

0.10 Wellbore-Path-DALUIM .cuvvvivieieeieiee oo ervss st esesserereesssesressssasesoss
911 Updatable ALITDULES .ovevirieiieereeiieieaniriieie e oo em st st emem s eraesasa e s

Figures
8-1—_Spatial Coordinate System for a Wellbore Pathovocveeeeeeeeeeeneeveeeeeeenn.

8-2—Illustration of Simple Two-point Linear Calibration
8-3—Tool String Configurationvvrivererneeninannas

Tables

8-1—CALIBRATION Attributes

8-2—CALIBRATION-COEFICIENT AUIIBUES ..ooooveeeeeeeeeeieee e vrresesonsessensseneen
8-3—CALIBRATYON-MEASUREMENT AHIIDUIES ..vveceeveeeeeeeveeeeeecees s vsasees

8-4—DLIS-CONTEXT Attributescccocvveveeee.

8-5—EQUIPMENT Atributesoocoeeoenerieeciie e,

8-6—MESSAGE Attributescocoooeeeevvrereeie v

8-T—PATH AUMDULES 1vovviieciiiiii e e es s
8-8—SPLICE AUIDULES ..ocvieiiiererriniisrrcicisiec s sssaes et cn s sinens s

B-0—TOOL AUTIDULES o.evvvevvteiieeiinsreereesraersirssisesrsr i bssebtsesnesrsnsesmsessessssnesasesesmsmn

..

Page
8-1
8-1

8-4
8-4
8-5
8-5
8-5

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

API RPxbb 95 HE 0732290 0556478 47T HM

Recommended Practice for Exploration and Production
Data Digital interchange
Part 8: DLIS Schema

0 Introduction

0.1 This standard contains introductory, normative, and annotative information.
Introductory information comprises everything that precedes Section 1, Scope. The
introductory clauses describe how the publication is organized and provide commentary
on the history and purpose of this standard. Normative information includes the actual
requirements that shall be satisfied by any data conforming to the standard. Annotative
information is provided as rationale for and illustrations about the normative information
and does not constitute part of the standard. The standard is completely stated even if all
introductory and annotative information are removed. Annotative information may refer to
terms introduced in later paragraphs or parts in order to tie together concepts, i.¢., from
time to time its value may increase after the reader has made a complete pass over the
standard.

0.2 Different styles are used to distinguish between nommative and annotative
information.

0.3 All normative information is written using this same font, and is contained in either
numbered paragraphs or numbered tables. Normative text is aligned with the left margin

. of the page.

0.4 All figures are annotative, and all annotative text is written in unnumbered
paragraphs in Helvetica italic font, indented, as shown here:

This is a paragraph of annotative text. its purpose is to include informal
commentary on the normaltive information in immediately preceding or
following paragraphs and may include references o or usage of normative
information in other parts of the standard.

1 Scope
Using the methodology outlined in Part 1, this part describes the Digital Log Inter-
change Standard (DLIS) schema, namely the collection of object types administered by

the API Subcommitiee Cn Standard Format For Digital Well Data using organization code
66. It includes object types useful for recording well log data,

2 Definitions

2.1 absent value: A placeholder that represents no value where a value is normally
expected to be. For attributes, this may be an absent attribute component or a zero count.
For channel samples, this is a zero count of the channel’s dimension.

2.2 angular drift: One of the coordinates of the spatial coordinate system of a wellbore
path. It is the angle measured eastwardly (clockwise when viewed from above) about the
vertical generatrix from North (see Figure 8-1).

. 2.3 attribute: A named item of information or data pertaining to an object type.

2.4 attribute count: The number of elements in an auribute value.

8-1

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

API RPxbb 9 EE 0732290 D556479 306 WA

8-2 APl RECOMMENDED PRACTICE 66, V2

2.5 attribute label: The name of an attribute,

2.6 attribute representation code: A code that identifies the recorded
representation of each element of an attribute value.

2.7 attribute units: An expression that represents the units of measurement of each
element of an attribute value.

2.8 attribute value: The value of an attribute. It may be present or absent, When
present, it consists of zero or more elements, each having the same units and the same
representation.

2.9 borehole: The physical hole created by boring or drilling. The term borehole is
used in a descriptive sense, as in borehole axis, borehole diameter, borehole effect, etc.

2.10 channel: A measured or computed quantity that occurs as a sequence of indexed
values.

2.11 consumer: The system or application program or company that reads or uses API
Recommended Practice 66 information.

2.12 copy number: One of three parts of an ohject name. It is used to distinguish two
objects of the same type in the same logical file that have the same origin and identifier.

2.13 data model: A description of a specification and representation paradigm for
data. .

2.14 dictionary: A database in which identifiers and reference values used under API
Recommended Practice 66 are maintained and administered.

2.15 dimension: a vector of integers that describe the dimensionality and extent of the
coordinate axes of an array.

2.16 element: One of a list of homogeneous quantities that make up the value of an
attribute or channel. Every element of a value has the same units and representation.

2.17 identifier: One of the three parts of an ohject name. It is a character string used to
distinguish the object from other objects of the same type. For some designated object
types, the identifier conveys meaning of the nature of the chject, and the identifier and its
meaning are maintained in a dictionary.

2.18 locus: A sequence of distinct points in space and time, each of which has a three-
dimensional position coordinate and a time coordinate.

2.19 logical file: The main unit of data exchange. It consists of a sequence of one or
more [ogical records, beginning with a record containing a single FILE-HEADER object.

2.20 measured depth: The distance into a wellbore measured along a wellbore path
frem its wellbore path datum to a wellbore point (see Figure 8-1).

221 object: A recorded instance of an object type. .

2.22 object name: A three-part unique reference to an object consisting of an origin, a
copy number, and an identifier.

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

API RPxbb 9t MM 0732290 0556480 028 WH

EXPLORATION AND PRODUCTION DATA DIGITAL INTERCHANGE, PAART 8: DLIS SCHEMA

8-3

2.23 object type: A logical entity of a schema that has a unigue type name and one or
more defined attributes. Instances of an object type are written in explicitly formatted
logical records.

2.24 organization code: A number assigned by API to an organization that identifies

the organization and represents schemas and dictionaries defined and administered by the
organization.

2.25 origin: One of three parts of an object name. It is a number referring to a distinct
ORIGIN object that contains context information for the objects that reference it.

2.26 path: A sequence of space-time coordinates.

227 producer: The system or application program or company that recorded
information under API Recommended Practice 66.

2.28 radial drift: The perpendicular distance of a point from the vertical generatrix
(see Figure 8-1).

2.29 representation code: A unique number that identifies a standard encoding for a
value as a sequence of one or more contiguous bytes.

230 schema: A formalized description of the encoding of information defined by a
logical model, typically in terms of a data model.

231 schema code: A numeric code found in Appendix A used to identify the
organization responsible for defining and administering a schema.

2.32 set: A collection of one or more objects of the same object type. A set is recorded
in an EFLR, and each EFLR has exactly one set.

2.33 set type: The type of objecis in a set,

2.34 update: a change in the value of an attribute previously written in the same
logical file.

2.35 template: An ordered group of one or more attributes that represent a default or
prototype object, written at the beginning of a set.

2,36 vertical depth: Distance measured along the vertical generairix from the
wellbore path datum,

2.37 vertical generatrix: A vertical line that passes through the wellbore path datum
(see Figure 8-1).

2.38 wellbore: A connected network of borehole within the earth. A wellbore has a
minimum of one wellbore origin and one wellbore terminus (see Figure 8-1).

2.39 wellbore path: A unique, non-overlapping path within a wellbore from a specific
point of inception at the earth’s surface to a specific point of ultimate extent in the
subsurface. The wellbore path nominally follows the central axis of the physical borehole
created by drilling between these two points (see Figure 8-1).

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

API RPxbb 9L EE (0732290 055L881 ThLy N

8-4 APl RECOMMENDED PRACTICE 66, V2

2.40 wellbore path datum: The origin of the coordinate system or zero point of .
reference for measuring along a wellbore path to a wellbore point. Ground level, derrick

floor, and kelly bushing are typical zero point references for linear measurements along a

wellbore path (see Figure 8-1).

2.41 wellbore point: A point position within a welibore (see Figure 8-1).

Figure 8-1 and the terminology related to it correspond with well terminclogy
found in the Petroleumn Industry Data Dictionary (PIDD). Sorme changes were
made to lerms introduced in APl Recommended Practice 66, Version 1 to
achieve this correspondence. In particular, well reference point was changed to
wellbore path datum and borehole depth to measured depth and their
definitions appropriately modified.

North
wellbore path datum

-—— vertical depth

wellbore point

—— vertical generatrix

—
—
—
a—
a—
a—
a—
mm—
——

— radial drift

Figure 8-1—Spatial Coordinate System for a Wellbore Path

3 Authority

Changes 10 the DLIS schema are recommended by the API Subcommittee On Recom-
mended Format For Digital Well Data and approved by the Executive Committee of the
API Exploration and Production Department. Changes may include addition of new object
types, addition of new attributes to existing object types, changes to the restrictions on
existing attributes, or removal of attributes or object types. An attribute or object type
removed in one edition may be restored in a later edition only if restored with its previous
meaning. A new edition of the basic schema occurs when approved by the Executive Com-
mittee and has an edition number obtained by adding 1 to the previous edition number.

The intent is to maintain as much consistency as possible between editions.
The principle motivation for a new edition should be to add new object types or
atiributes. However, from time to time compelling reasons arise for removing
items because they are unused or impose unreasonable burdens on users and
implamentations.

4 Concepts
administered by an organization. The schema is identified by an organization code (see

Appendix A). The object types support writing data of interest to the organization and
reflect a data model adopted by the organization, whether explicitly or implied.

4.1 As stated in Part 1, a schema is a collection of object types specified and I

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

API RPxEL 96 EB 0732290 055L4a2 9T0 HR

EXPLORATION AND PRODUCTION DATA DIGITAL INTERCHANGE, PART 8: DLIS ScHEMA

4.2 The data model represented by the DLIS schema is implied by the descriptions of
the object types given in this part. The DLIS schema provides the following object types:

a. CALIBRATION, used to identify the collection of measurements and coefficients that
participate in the calibration of a channel,

b. CALIBRATION-COEFFICIENT, used to record coefficients, their references and
tolerances used in the calibration of channels.

¢. CALIBRATION-MEASUREMENT, used to record measurements, references, and
tolerances with which calibration coefficients are computed.

d. EQUIPMENT, used to describe an item of surface or downhole equipment used in the
acquisition of data.

€. DLIS-CONTEXT, used to establish a context for the data related to a particular origin.

f. MESSAGE, used to write a textual message lied to other data by means of a time
stamp and other indexing attributes.

g. PATH, used to identify channels that represent the coordinates of a path aleng which a

logging tool string may pass and to specify certain geometric features of the tool string
relative to the path.

h. SPLICE, vsed to identify the component channels of a splice and the splice points.

i. TOOL, used to record information about a logging tool and its component equipment
parts,

J- WELLBORE-PATH-DATUM, used to record the Jocation of a wellbore path datum
(see 2.40).

5 Unit Model

In this part, any unit expressions used in unit restrictions belong to the API-SI unit
model corresponding to organization code 0 (zero).

6 Dictionary-Controlled Identifiers

The following object types are required to have dictionary-controlled identifiers (see
Part 2):

a. TOOL
7 Required vs Optional Use of Attributes
Use of any attribute is considered optional unless otherwise stated. More stringent

requirements on presence of attributes is delegated o content standards, which are not part
of this document,

8 Frequently-Used Attributes

Alttributes DESCRIPTION and EXTENDED-ATTRIBUTES are used in all object types
as specified in the API Recommended Practice 66 basic schema (see Part 6).

9 DLIS Object Types
9.1 Calibration

8.1.1 A CALIBRATION object identifies the collection of measurements and
coefficients that participate in the calibration of a channel.

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

API RPxbb 9L EE 0732290 0556883 437 HH

8-6 AP| RECOMMENDED PRACTICE 66, V2

Py

8in “SMALL-RING"” measurement = 8.2 in
(reference = 8 in}

|
-

16 in “LARGE-RING” measurement = 15.9 in
{reference = 16 in)

Y

calibrated = gain X measured + offset gain=8/7.7=1.038...
8 = gain x 8.2 + offset ofiset=—4/7.7=-0.5184 ..
16 = gain % 15.9 + offset

A simple application of calibration is the linear two-point method. Two measurements are taken and
compared against two references. The comparison yields a gain coefficient and an ofiset
coefficient, which are then used to compute calibrated values from uncalibrated measuremsnts.

Figure 8-2—lllustration of Simple Two-point Linear Calibration

Table 8-1 — CALIBRATION Attributes

*Note Attribute Labetl Restrictions
DESCRIPTION c=!, r=ASCII, u=
EXTENDELD-ATTRIBUTES =0BJREF, u= .

1 CALIBRATED-CHANNELS r=0BNAME, u=
2 UNCALIBRATED-CHANNELS r=0BNAME, u=
3 COEFFICIENTS r=OBNAME
4 DATE c=1, =DTIME, u=
5 MEASUREMENTS r=0BNAME, v=
6 PARAMETERS r=OBNAME, u=
7 METHOD c=1, r=IDENT | TIDENT, u=,
v=(see note)
*Notes:

1. CALIBRATED-CHAMNNELS is a list of names of CHANNEL objects. The corresponding channels (typi-
cally just one)} are declared to be calibrated using the coefficients and measurements identified by the COEFFI-
CIENTS and MEASUREMENTS attributes.

2. UNCALIBRATED-CHANNELS is a list of names of CHANNEL objects. The corresponding channels
(typically just one) are used, along with coefficients and according to the computational method, to compute the
channels identified by the CALIBRATED-CHANNELS attribute.

3., COEFFICIENTS is a list of names of CALIBRATION-COEFFICIENT objects. The coefficients,
references, and tolerances collectively defined by these objects are used o compule the channels identified by
the CALIBRATED-CHANNELS attribute.

4. DATE is the date the coefficients were computed,

5. MEASUREMENTS is a list of names of CALIBRATION-MEASUREMENT objects. The measurements
eollectively defined by these objects are used to derive the coefficients that are used to calibrate the channels
identified by the CALIBRATED-CHANNELS attribute.

6. PARAMETERS is a list of names of PARAMETER objects. The referenced objects provide information
directly associated with the calibration process, for example statistics, quality control indicators, parameters
entered by the operntor, vendor-supplied coefficients, and other information (numeric or textual) that is
potentially of interest to the consumer.

7. METHOD is a reference value that defines the computational method used to calibrate the channels
identified by the CALIBRATED-CHANNELS autribute. There are currently no reference values defined under
the DLIS schema.

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

API RPxtt 965 HR 0732290 055L884 7?73 WB

EXPLORATION AND PRODUCTION DATA DIGITAL INTERCHANGE, PART 8: DLIS SCHEMA

. 9.2 Calibration-Coefficient

9.21 A CALIBRATION-COEFFICIENT object is used to record coefficients, their
references and tolerances used in the calibration of channels.

Table 8-2 — CALIBRATION-COEFICIENT Attributes

*MNote Attribute Label Restrictions
DESCRIPTICN c=1, r=ASCIl, u=
EXTENDED-ATTRIBUTES r=OBJREEF, u=

1 LABEL c=1, r=IDENT | TIDENT, u=, v=(see note)
2 COEFFICIENTS
3 DIMENSION r=ULONG, u=
4 AXIS r=0BNAME, u=
5 REFERENCES
6 PLUS-TOLERANCES
7 MINUS-TOLERANCES
*Notes:

f. LABEL is a reference value that identifies the role of COEFFICIENTS in the calibration process. There are
currently no reference values defined under the DLIS schema.

2. COEFFICIENTS is an array of coefficients corresponding to LABEL.

3. DIMENSION applies to COEFFICIENTS, REFERENCES, PLUS-TOLERANCES, and MINUS-
TOLERANCES (For DIMENSION usage, see Part 6, Basic Schema.)

4. AXIS applies to COEFFICIENTS, REFERENCES, PLUS-TOLERANCES, and MINUS-TOLERANCES
(For AXIS usage, see Part 6, Basic Schema.)

5. REFERENCES is an array of references comresponding to COEFFICIENTS. Each REFERENCES element
represents in some sense the nominal value of the corresponding COEFFICIENTS element.

6. PLUS-TOLERANCES is an amay of tolerances corresponding to COEFFICIENTS. Each PLUS-
TOLERANCE element indicates by how much the comesponding COEFFICIENTS element may exceed its
reference and still be “within tolerance”. Elements shall be non-negative numbers, A coefficient is within
tolerance if it is less than or equal to its reference plus its plus tolerance. If this attribule is absent, then infinite
plus tolerance is assumed. ’

7. MINUS-TOLERANCES is an array of tolerances corresponding to COEFFICIENTS. Each MINUS-
TOLERANCE element indicates by how much the cotresponding COEFFICIENTS element may fall short of its
reference and still be “within tolerance™. Elements shall be non-negative numbers. A coefficient is within
tolerance if it is greater than or equal to its reference minus its minus 1olerance. If this atribute is absent, then
infinite minus tolerance is assumed.

9.3 Calibration-Measurement

9.3.1 A CALIBRATION-MEASUREMENT object is used to record measurements,
references, and tolerances with which calibration coefficients are computed.

Table 8-3 — CALIBRATION-MEASUREMENT Attributes

*Note Attribute Label Restrictions
DESCRIPTION c=1,r=ASCIl, u=
EXTENDED-ATTRIBUTES r=0BJREF, u=

1 PHASE ¢=1, r=IDENT i TIDENT, u=, v=(see note)
2 MEASUREMENT-SOURCE c=1, r=0OBJREF, u=
3 TYPE ¢=1, r=IDENT | TIDENT, u=, v=(see note)
4 DIMENSION r=ULONG, u=
5 AXIS r=0BNAME, u=
6 MEASUREMENT
7 SAMPLE-COUNT e=1
8 MAXIMUM-DEVIATION
. 9 STANDARD-DEVIATION

=

BEGIN-TIME o=l

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

API RPxbLb 9b EE 0732290 0556885 LOT HA

8-8 AP| RECOMMENDED PRACTICE 66, V2

Table 8-3 — CALIBRATION-MEASUREMENT Afiributes (Continued)

*Note Attribute Label Restrictions
11 DURATION c=l
12 REFERENCE
13 STANDARD
14 PLUS-TOLERANCE
15 MINUS-TOLERANCE
*Notes:

1. PHASE is a reference value indicating what phase in the overall job sequence is represented by the current
measuvrement (see Part 9).

2. MEASUREMENT-SOURCE references an object that specifies the source of the data recorded in
MEASUREMENT.

3. TYPE is a reference value that specifies the type of measurement taken. Currently there are no reference
values defined under the DLIS schema.

4, DIMENSION applies to MEASUREMENT, MAXIMUM-DEVIATION, STANDARD-DEVIATION,
REFERENCE, PLUS-TOLERANCE, and MINUS-TOLERANCE. (For DIMENSION usage, see Part 6, Basic
Schema.)

5. AXIS applies to MEASUREMENT, MAXIMUM-DEVIATION, STANDARD-DEVIATION,
REFERENCE, PLUS-TOLERANCE, and MINUS-TOLERANCE, When present, its count shall match
DIMENSION count. {For AX1S usage, see Part 6, Basic Schema.)

6. MEASUREMENT consists of one or more values, each described by DIMENSION, and each representing
one measvrement sample related to the uncalibrated data and described by TYPE. The number of values in
MEASUREMENT is its count divided by the size in elements of a value described by DIMENSION. The
measurement may represent values of, an average of, or some other function of the uncalibrated data.

7. SAMPLE-COUNT is the number of measurement values used to compute MAXIMUM-DEVIATION and
STANDARD-DEVIATION.

8. MAXIMUM-DEVIATION is meaningful only when MEASUREMENT contains a single sample value. In
this case, the measurement is considered to be a mean, and MAXIMUM-DEVIATION represents the maximum
deviation from this mean of any sample vused to compute the mean. For arrays, the mean and maximum
deviation are computed independently for each element. The deviation for any clement from the mean is
computed as an absolule value.

9. STANDARD-DEVIATION is meaningful only when MEASUREMENT contains a single sample value. In
this cose, the measurement is considered to be a mean, and STANDARD-DEVIATION represeats the statistical
standard deviation of the samples used to compute the mean. For arrays, the mean and standard deviation are
computed independently for each sample elesnent.

10. BEGIN-TIME is the time at which acquisition of the measurement in MEASUREMENT began. BEGIN-
TIME represents either an absolute date and time (if =DTIME) or an elapsed time from ORIGIN:CREATION-
TIME otherwise.

11. DURATION is a time interval representing the acquisition duration of the measurement in
MEASUREMENT.

12. REFERENCE is the expected nominal value of a single sample value of the measurement represented in
MEASUREMENT.

13. STANDARD is the measurable quantity of the calibration standard used to produce the MEASUREMENT.
For example, a standard used to calibrate a caliper is a steel ring. ks measurable quantity is its inside diameter,
e.g., 8 inches. The MEASUREMENT and REFERENCE may represent the same physical guantity as the
calibration standard, e.g., length. In this case, STANDARD provides the same information as REFERENCE and
is normally absent to avoid redundancy. M is possible, however, for MEASUREMENT and REFERENCE to
represent a different physical quantity, e.g., voltage. In this case, STANDARD is needed to describe the
transformation from the physical quantity represented by the MEASUREMENT and REFERENCE to the
physical quantity of the calibration standard, ¢.g., from millivolts to inches. Deriving this transformation may
require vsing STANDARD from more than one CALIBRATION-MEASUREMENT object.

14. PLUS-TOLERANCE indicates by how much each measurement sample value may exceed a reference and
still be “within tolerance”. Elements shall be non-negative numbers. If a measurement sample value is an array,
then so is its reference and plus tolerance. A measurement sample value is within tolerance if each of its
elements is less than or equal to the sum of the corresponding reference and plus tolerance elements. Plus
tolerance represents in some sense the maximum acceptable drift of each recorded measurement sample above
the value of the recorded reference. If PLUS-TOLERANCE is absent, then the plus tolerance is implicitly
infinite.

15. MINUS-TOLERANCE indicates by how much cach mcasurement sample value may falt short of a
reference and still be “within tolerance”. Elements shall be non-negative numbers. 1f a measurement sample
valug is an array, then so is its reference and minus telerance. A measurement sample value is within tolerance if
each of its elements is greater than or equal 1o the difference of the comresponding reference and minus tolerance
elements. Minus tolerance represents in some sense the maximum acceptable drift of each recorded measurement .

sample below the value of the recorded reference. If MINUS-TOLERANCE is absent, then the minus tolerance
is implicitly infinite,

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

API RPxbb 9L EEB 0732290 055LadbL S5u4bL W

EXPLORATION AND PRODUCTION DATA DIGITAL INTERCHANGE, PART B: DLIS SCHEMA

. 9.4 DLIS-Context

9.4,1 A DLIS-CONTEXT object is used to establish a context for the data related to a
particular origin. It is the object referenced from the ORIGIN:CONTEXT attribute for
data using the DLIS schema.

Table 8-4 — DLIS-CONTEXT Attributes

*Note Attribute Label Restrictions
DESCRIPTION c=], r=ASCl, u=
EXTENDED-ATTRIBUTES r=0OBJREF, u=

| PRODUCT c=1, r=ASCH, u=

2 VERSION c=1, r=AS8CIl, u=

3 PROGRAMS r=ASCIl, u=

4 ORDER-NUMBER e=|, r=ASCII, u=

5 DESCENT-NUMBER

6 RUN-NUMBER

7 WELL-ID c=l,u=

8 WELL-NAME c=1, r=ASCI, u=

9 FIELD-NAME c¢=l, r=ASCIl, u=

10 COMPANY r=ASCII, u=

11 PRODUCER~CODE c=l, =UNORM, u=

12 PRODUCER-NAME ¢=1, =ASCII, u=
*Notes:

1. PRODUCT is the name of the software product (¢.g., the irademarked acquisition or interpretation software
system) that produced the data associated with this object.
2. VERSION is the version of the product specified by PRODUCT.

. 3. PROGRAMS is a list of the names of specific programs or services, operating as part of the software
specified by PRODUCT, that were used to generate the data associated with this object.
4. ORDER-NUMBER is a unique accounting number associated with the acquisition or creation of the data
associated with this object. It is typically known as the service order number,
5. DESCENT-NUMBER is meaningful to the producer. The meaning of this attribute is specified by the
producer to the consumer by means external to DLIS.
6. RUN-NUMBER is meaningful to the company or companies specified in COMPANY. The meaning of this
attribute is specified to the producer by means external to DLIS.
7. WELL-ID is a codified identifier of the well in or about which measurements were taken. Whenever
applicable, the APl Well Number should be used. This is a unique, permanent, numeric identifier assigned to a
well in accordance with the American Petrolerm Institute Bulletin D12 A, January, 1979.
8. WELL-NAME is the name of the well,
9. FIELD-NAME is the name of the field to which the well belongs. If there is no field, then the value shall be
WILDCAT.
10. COMPANY is a list of names of the client company or companies for which the data was acquired or
computed, typically the operator of the well and partaers.
I1. PRODUCER-CODE is the producer’s APl Recommended Practice 66 organization code as found in
Appendix A. The producer is the organization whose authorized agent generated the logical file containing this
object using software programs developed under the sponsorship of the organization. This code is assigned on
request by the Production Department of the API at 1220 1. Street, N.W., Washington, .C. 20005. This atrribute
is required.
12, PRODUCER-NAME is the producer’s business or organization name.

9.5 Equipment

9.5.1 An EQUIPMENT object describes an item of surface or downhole equipment
used in the acquisition of data. The purpose of this object type is to record information
about individual pieces of equipment of any sort that is used during a job. The TOOL
object then collects equipment together in ensembles that are more readily recognizable to

. the consumer.

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

API RPxbb 95 EE 0732290 D55L887 usz WA

8-10 APl RECOMMENDED PRACTICE 66, V2

Table 8-5 — EQUIPMENT Attributes

*Note Attribute Label Restrictions
DESCRIPTION c=!, r=ASCIL u=
EXTENDED-ATTRIBUTES r=OBJREF, u=

1 TRADEMARK-NAME e=!, r=ASCIL u=
2 STATUS c=1, r=STATUS, u=
3 TYPE c=1, r=IDENT | TIDENT, u=, v=(see note)
4 SERIAL-NUMBER ¢=1, r=IDENT, u=
5 LOCATION c=1, r=IDENT | TIDENT, u=, v=(see note)
6 HEIGHT =1
7 LENGTH c=1
8 MINIMUM-DIAMETER e=1
9 MAXIMUM-DIAMETER c=I
10 VOLUME c=I
11 WEIGHT c=I
12 HOLE-SIZE o=l
13 PRESSURE c=1
14 TEMPERATURE c=l
15 VERTICAL-DEPTH c=I
16 RADIAL-DRIFT c=1
17 ANGUILAR-DRIFT e=1
*Notes:

l. TRADEMARK-NAME is the name used by the producer to refer to the equipment.

2 STATUS indicates the operational status of the equipment.

3. TYPE is a reference value that indicates the generic type of equipment (see Part 9).

4. SERIAL-NUMBER is the serial number of the equipment instance,

5. LOCATION is a reference value that indicates the general location of the equipment (see Part 9).

6. HEIGHT applies only to equipment located in the borehole. it is the hclght of the bottom of the equlpmem
above the tool zero point (see 9.7.5) when the tool string comammg the equipment is vertical. This valuve is
positive when the equipment bottor is above the tool zero point and is negative when the equipment bottom is
below the too! zero point. There is normally one piece of equipment for which the height is zero.

7. LENGTH is the length of the equipment and is typically measured from bottom make up point to top make
up point. It may not apply to surface equipment. The total length of the tool string may not equal the sum of the
lengths of all the equipment that make up the tool string, since some equipment may slip over other equipment.
Such “slip-on™ equipment includes, for example, standoffs, centralizers, and excentralizers. Similarly, the height
of a piece of equipment may be independent of the lengths of the equipment below it.

8. MINIMUM-DIAMETER applies to equipment used in the borehole. It is the minimum outer diameter of
the equipment. This is defined to be the minimum horizontal cross-sectional diameter measured when the
equipment is in a vertical configuration. For extendible or compressible equipment {(e.g., caliper arms and
centralizers), this measurement indicates the smallest operational diameter possible.

9. MAXIMUM-DIAMETER appties to equipment used in the borchole. It is the maximum outer diameter of
the equipment. This is defined 10 be the maximum horizontal cross-sectional diameter measured when the
equipment is in a vertical configuration. For extendible or compressible equipment {(e.g., caliper arms and
centralizers), this measurement indicates the largest operational diameter possible.

10. VOLUME is the volume of the equipment and is typically used to determine buoyant weight of the
equipment. It may not apply to surface equipment.

11. WEIGHT is the weight of the equipment in air. It may not apply to surface equipment.

12. HOLE-SIZE applics to equipment in the borehole. It is the minimum borehole diameter for which the
equipment may reasonably be used.

13. PRESSURE is the maximum operational pressure rating of the equipment, when applicable.

14. TEMPERATURE is the maximum operational temperature rating of the equipment, when applicable.

15. VERTICAL-DEPTH is the vertical depth of an equipment item that is normally stationary (see 2.36).

16. RADIAL-DRIFT is the radial drift of an equipment item that is normaliy statiopary (see 2.28).

17. ANGULAR-DRIFT is the angular drift of an equipment item that is normatly stationary (sce 2.2).

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

API RPxbb 9b WM 0732290 055L8838 319 WA

EXPLORATION AND PRODUCTION DATA DIGITAL INTERCHANGE, PART 8: DLIS SCHEMA

. 9.6 Message

9.6.1 A MESSAGE object is used to write a textual message tied to other data by means
of a time stamp and other indexing attributes. Such messages typically represent operator
interaction with the system, e.g., a “scroll” of the logging session, or informational
messages concerning cvents that occurred during the session.

Table 8-6 — MESSAGE Attributes

*Note Attribute Label Restrictions
DESCRIPTION c=1, r=ASCIl, u=
EXTENDED-ATTRIBUTES r=0OBIREF, u=

1 TYPE c=I, r=IDENT | TIDENT, u=, v=(see note)}

2 TIME c=1

3 MEASURED-DEPTH c=1

4 VERTICAL-DEPTH c=I

5 RADIAL-DRIFT c=}

6 ANGULAR-DRIFT c=1

7 TEXT r=ASCII, u=
*Notes:
I. TYPE is a reference value indicating the source and purpose of the message (see Pant 9), This artribute is
required.
2. TIME is the time the message was issued.
3. MEASURED-DEPTH is the measured depth of the tool zero point at the time message was issued (see 2.20).
4. VERTICAL-DEPTH is the vertical depih of the tool zero point at the time message was issued (see 2.36).
5. RADIAL-DRIFT is the radial drift of the tool zero point at the time message was issued (see 2.28).
6. ANGULAR-DRIFT is the angular drift of the tool zero point at the thme message was issued (see 2.2).

. 7. TEXT is the text of the message. This atiribure is required.

9.7 Path

9.7.1 A PATH object is used 1o identify channels that represent the coordinates of a path

along which a logging tool string may pass and to specify certain geometric features of the
tool string relative to the path.

9.7.2 Log data consists of a sequence of values (i.e., a channel) traversing a locus in
space and time. A locus in space and time is a sequence of distinct points, each of which,
in the most general case, has a three-dimensional position coordinate, and a time
coordinate. The sequence {value;, position;, time;} is called a data path, and each member
of the sequence is called a step on the data path. The sequence {position;, time;} is the
locus of the data path. Note that it is possible for two points on a locus to occupy the same
position in space so long as they occupy that position at different times, In the extreme
case, a locus can have a fixed position.

9.7.3 A complete position coordinate is made up of three components that correspond to
the spatial coordinate system of a well (see Figure 8-1): depth (measured or vertical);
radial drift; and angular drift. Occasionally, both measured and vertical depth components
are known and are recorded together.

9.7.4 Data paths are represented as subgroups of channels in frames. Some or all of the
components of a data path may be recorded; other components may be unknown or
irrelevant, The {value;} sequence, known as the dala path’s value channel, is always
recorded. The mechanism for defining data paths is the PATH object. PATH objects are not
. needed to decode frames, but they add informational value to the contents of frames.

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

API RPxbb 9 EE 0732290 0556889 255 W

812 AP| RECOMMENDED PRACTICE 66, V2

9.7.5 A tool string has three points of particular interest. They are its measure point, its
tool zero point, and its data reference point (see Figure 8-3). These points give rise to a
depth offset and a measure point offset which are critical for interpreting the relation
between index channels and data channels in a frame type.

9.7.6 A channel is sampled at its measure point, which is a fixed position relative to the
tool string, whenever a data reference point (another fixed position relative to the tool
string) passes certain positions along the well. If the well positions are equally spaced in
depth, and if the interval between the measure point and the data reference point is not
evenly divisible by the sampling interval, the channel will have a depth offset.

X channel sample points

data reference sample points

measure point — f —— - - - - - — - = -
P | depth offset \

I
I
]
i
|
: measure point offset
1
1
. 1
tool zero point | e :
!

data reference point e M- - - - v -~ - - -

Figure 8-3—Tool String Configuration

Table 8-7 — PATH Attributes

*Note Autribute Label Restrictions
DESCRIPTION ¢=1, r=sASCIL u=
EXTENDED-ATTRIBUTES r=0OBIREF, u=

! FRAME-TYFE ¢=1, =0BNAME, u=

2 WELLBORE-PATH-DATUM c=1, r=OBNAME, u=

3 VALUE r=OBNAME, u=

4 MEASURED-DEFTH c=1

5 VERTICAL-DEPTH c=1

6 RADIAL-DRIFT c=1

7 ANGULAR-DRIFT c=1

8 TIME =1 .
9 DEPTH-OFFSET e=1

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

API RPxtb 9b EE 0732290 055L890 T77 W

EXPLORATION AND PAGDUCTION DATA DIGITAL INTERCHANGE, PART 8: DLIS SCHEMA 813
. Table 8-7 — PATH Attributes (Continued)
*Note Attribute Label Restrictions

10 MEASURE-POINT-OFFSET e=1

11 TOOL-ZERO-OFFSET c=1
*Notes:
I. FRAME-TYPFE is the name of a FRAME object that describes the frame type in which the path channels
are recorded.

2. WELLBORE-PATH-DATUM is the name of a WELLBORE-PATH-DATUM object that describes the
wellbore path datum for this path,

3. VALUE is a list of names of CHANNEL objects that describe one or more value channels for this path.
This artrituie is required.

4. MEASURED-DEPTH is a constant measured depth coordinate for this path if r is numeric, or the name of
a CHANNEL object if =OBNAME that describes a measured depth channel for this path.

5, VERTICAL-DEPTH is a constant vertical depth coordinate for this path if 1 is numeric, or the name of a
CHANNEL object if =OBNAME that describes a vertical depth channel for this path.

6. RADIAL-DRIFT is a constant radial drift coordinate for this path if r is numeric, or the name of a
CHANNEL object if =OBNAME that describes a radial drift channel for this path.

7. ANGULAR-DRIFT is a constant angular drift coordinate for this path if r is numeric, or the name of a
CHANNEL object if =OBNAME that describes a angular drift channel for this path.

8. TIME is a constant time coordinate for this path if ¢ is numeric, or the name of a CHANNEL object if
t=OBNAME that describes a time channel for this path. If r is numeric and not DTIME, it represents elapsed
time since ORIGIN:CREATION-TIME.

9. DEPTH-OFFSET is a depth offset, which indicates how much VALUE is “off depth™. This is meaningful
only when there is a measured depth channel for this path. If D is the value of the measured depth channel in a
frame and D" is the actual known measured depth at which channels in the frame were sampled, then D=D" +
depth offset.

10. MEASURE-POINT-OFFSET is a measure point offset, which indicates a fixed distance along measured
depth from the value channhel’s measure point to a data reference point. This is 3 special case that depends on the
data acquisition model and applies only when there is a recorded measured depth channel for this Path. If
MEASURE-POINT-OFFSET is zero or absent, then the time channel for this path is explicitly related to the
value channel. That is, in each frame, v, is sampled at t;. If the MEASURE-POINT-OFFSET is present and non-
zero, the time channel is instead explicitly related to the data reference point and is implicitly related to the value
channel. In cach frame, t; is the time that the data reference point was at dj, which is the frame's measured depth.
The value channel sample v; is still considered to be sampled at d;, but at a time different from ¢,. The explicit
time for the value channel can be recovered using the knowledge that at time t; when the data reference point was
at depth d;, the value channel measure point was at depth d;-measure point offset. Typically, only a single time
channel per origin will be recorded in a frame type, the one explicitly associated with the data reference point.
11. TOOL-ZERO-OFFSET is the distance of the data reference point for this path above the tool string’s tool

zero point. It may be positive or negative and is frequently zero. Specifically, data reference point = tool zero
point + tool zero offsel.

9.8 Splice

9.8.1 A SPLICE object is used to identify the compenent channels of a splice and the
splice points. A splice is the result of taking values of two or more distinct channels (e.g.,
from different runs) from mutually disjoint intervals to produce a resultant channel defined
over the union of the intervals.

Table 8-8 — SPLICE Attributes

*Note Attribute Label Resirictions
DESCRIPTION c=1, r=ASCIL u=
EXTENDED-ATTRIBUTES r=0OBJREF, u=
1 OUTPUT-CHANNEL ¢=1, r=OBNAME, u=
2 INPUT-CHANNELS r=0BNAME, u=
3 ZONES r=OBNAME, u=
*MNotes:
. I. OUTPUT-CHANNEL is the name of a CHANNEL object that represents the spliced channel, i.e., the
resultant of the splice operation. The spliced channel may be implied by the SPLICE object and need not actually

exist. When the spliced channel does exist, its PROPERTIES attribute shall include the reference value
SPLICED.

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

API RPxbb 9- HB 0732290 0556491 903 N

8-14 API RECOMMENDED PRACTICE 66, V2

Table 8-8 — SPLICE Attributes (Continued)

2. INPUT-CHANNELS is a list of names of CHANNEL objects that represent the input channels of the splice
operation. This arrribute is required.

3. ZONES is a list of names of ZONE objects that describe mutually disjoint intervals in which the spliced
channel is defined. When present, ZONES count matches INPUT-CHANNELS count. The spliced channel is
derived from the k' input channel in the k™™ zone. If ZONES is absent, then INPUT-CHANNELS count shall be
I, and API basic schema UPDATE objects are used to indicate where input channels change.

99 Tool

9.9.1 A TOOL object is used to record information about a logging tool and its
component equipment parts.

9.9.2 TOOL objects specify ensembles of equipment that work together to provide
specific measurements or services. Such combinations are more recognizable to the
consumer than are their individual pieces. A typical tool consists of a sonde and a
cartridge and possibly some appendages such as centralizers and spacers. It is also
possible to identify certain pieces or combinations of surface measuring equipment as

tools,
Table 8-9 — TOOL Atftributes
*Note Attribute Label Restrictions
DESCRIPTION c=1, r=ASCII, u=
EXTENDED-ATTRIBUTES r=0OBJREF, u=
1 TRADEMARK-NAME c=1, r=ASCII, u=
2 GENERIC-NAME c=1, r=ASCII, u=
3 PARTS r=0BNAME. u=
4 STATUS c=1, I=STATUS, u=
5 CHANNELS r=OBNAME, u=
6 PARAMETERS r=OBNAME, u=
*Noles:

I. TRADEMARK-NAME is the name used by the producer to refer to the wol.

2. GENERIC-NAME is the name generally used within the industry to refer to tools of this type.

3. PARTS is a list of names of EQUIPMENT objects that represent the pans of the tool.

4. STATUS indicates whether the tool is enabled to provide information to the acquisition system or whether
it has been disabled and is simply occupying space.

5. CHANNELS is a list of names of CHANNEL objects describing channels that are produced directly by this
tool. A channel shall not be produced directly by more than one tool. Channels that have multiple tool sources
should be associated with their indirect 100l sources via API basic schema PROCESS objects.

6. PARAMETERS is a list of names of PARAMETER objects describing parameters that directly affect or
reflect the operation of this tool. Parameters may be shared by different tools.

9.10 Wellbore-Path-Datum

9.10.1 A WELLBORE-PATH-DATUM object is used to record the location of a
wellbore path datum.

This object type was called WELL-REFERENCE-POINT in APl Recommended
Practice 66, Version 1. The name change was mads to correspond to standard
terminology found in the Petroleum Industry Data Dictionary (PIDD).

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

-

API RPxbb 9b ER 0732290 055L892 A4T W

EXPLOAATION AND PRODUGTION DATA DIGITAL INTERCHANGE, PART 8: DLIS SCHEMA

8-15

Table 8-10 — WELLBORE-PATH-DATUM Attributes

*Note Attribute Label Restrictions
DESCRIPTION c=I, r=ASCII, u=
EXTENDED-ATTRIBUTES r=OBJREF, u=

1 PERMANENT-DATUM c=1, r=ASCII, u=
2 VERTICAL-ZERO c=1, r=ASCIIL u=
3 PERMANENT-DATUM-ELEVATION c=1
4 ABOVE-PERMANENT-DATUM e=1
5 MAGNETIC-DECLINATION c=1
6 COORDINATE-|-NAME c=1, r=ASCII, u=
7 COORDINATE-1-VALUE |
8 COORDINATE-2-NAME c=1, r=ASCII, u=
9 COORDINATE-2-VALUE c=I
10 COORDINATE-3-NAME ¢=1, r=ASCII, u=
i COORDINATE-3-VALUE c=1

*Notes:

I. PERMANENT-DATUM is a permanent entity or structure (¢.g., ground Jevel) from which vertical distance
can be measured.

2. VERTICAL-ZERO is a particular entity (e.g., kelly bushing) that corresponds to zero measured depth.

3. PERMANENT-DATUM-ELEVATION is the distance of the PERMANENT-DATUM above mean sea
level. A negative value indicates the distance is below mean sea level.

4, ABOVE-PERMANENT-DATUM is the distance of VERTICAL-ZERO above PERMANENT-DATUM. If
negative, then VERTICAL-ZERQ is below PERMANENT-DATUM.

5. MAGNETIC-DECLINATION is the angle with vertex at the wetlbore path datum determined by the line of
direction to geographic north and the line of direction to magnetic north. A positive value indicates that magnetic
north is cast of geographic north. A negative value indicates that magnetic north is west of geographic north.

6. COORDINATE-1-NAME is the name of the first of three independent spatial coordinates, such as
longitude or latitude or elevation, that can be used to locate the wellbore path datum.

7. COORDINATE-1-VALUE is the numerical value of the coordinate named by COORDINATE-1-NAME.,
8. COORDINATE-2-NAME is the name of the second of three independent spatial coordinates, such as
longitude or latitude or elevation, that can be used to locate the wellbore path datum.

9. COORDINATE-2-VALUE is the numerical value of the coordinate named by COORDINATE-2-NAME.
10. COORDINATE-3-NAME is the name of the third of three independent spatial coordinates, such as
longitude or latitude or elevation, that can be used to locate the wellbore path datum.

11. COORDINATE-3-VALUE is the numerical value of the coordinate named by COORDINATE-3-NAME.

9.11 Updatable Attributes

9.11.1 Table 8-11 lists atiributes of the DLIS schema that may be updated using
UPDATE objects.

Table 8-11 — Updatable Attributes

*Note Object Type Autribute Label
1 CALIBRATION-COEFFICIENT COEFFICIENTS
2 SPLICE INPUT-CHANNELS
*Notes:

l. Update of COEFFICIENTS indicates an adjustment or correction of some kind. The updated values may
not be directly derived from measurements.

2. When a splice operation begins, it may not be known what all of the input channels will be. It must be
possible to provide this information on the fly. The INPUT-CHANNELS attribute may be updated if and only if
the ZONES attribute is absent. In this case, the count of INPUT-CHANNELS is |, and an update indicates a
change in the input channel at the frames indicated by the UPDATE object.

COPYRI GHT 2000 Anerican PetroleumlInstitute

I nformati on Handling Services, 2000

API RPxkt 95 EE 0732290 055kLAY3 78L ER

Recommended Practices for
Exploration and Production Data
Digital Interchange

Part 9: DLIS Dictionary

Exploration and Production Department

. APl RECOMMENDED PRACTICE 66, V2
SECOND EDITION, JUNE 1996

American
. L) Petroleum

Institute

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

API RPxbb 9t EM 0732290 0556894 Ll2 WE

. CONTENTS

INTRODUCTION
AUTHORITY oottt vsnenie et st e ees et et se st es e e eee e e st ot 9-1

CALIBRATION-MEASUREMENT REFERENCE VALUESooovvvvreee 9-2
Al PRESE ettt s e en e e e e ene 9-2

5 O/CHANNEL REFERENCE VALUESoovvoiiteieccecameeeee e reeressesessses 9-2
5.2 PROPETHES «oooiiie e nss st ssscmeeeesesvasvasarsssssssrsessnenns. 92

6 O/COMPUTATION REFERENCE VALUESooooommeve oot 9-4
6.1 PIOPEITIESovviiiessesii e reeeenrnrmrmrarresensse s bee e seseseseeeeneeene et e e s e eesenenesenes 9-4

7 EQUIPMENT REFERENCE VALUEScooooimicieeeeeeeeeeeesceses e oo 9-4
7.1 LOCALON ovnirrieieeie ettt ene st ae st et e e eeerrsesenstesasss s senenes | Oed)

T2 TYPE st ee e enenenenssanss Ok
8 MESSAGE REFERENCE VALUEScccooouimrnmceessesststseee e es s 9-5
Bl TYPE st e ee e b b sttt ettt e e e en 9-5

. 9 O/PARAMETER REFERENCE VALUES ..ot e e eee e 9-5
9.1 PrOPETHIES L.iivtiirmniiiric e ess s essaseseeesevereresnsesnneseserss. 925

Page

- 2

AW

10 O/ZONE REFERENCE VALUES ..ot eeeeeeevrresesstresees e e e e seeeen 9.5
101 DOMAIN coiitsviericieccie e s sesri st esee e st ssscse s menssesnsstssesesntesseseeessneesens 9=

Tables
9-1—CAILIBRATION-MEASUREMENT:PHASE Reference Values ... 9.2
9-2—(/CHANNEL:KIND Reference Valuescocoveveeveeeieeeeeeresesooeoeesesessennn 922
9-3—0/CHANNEL:PROPERTIES Reference VAIUEScccoveveeevereeceieres i, 922
9-4—EQUIPMENT:LOCATION Reference Valuesoovvveeereeereeeroron, 9-4
9-5—EQUIPMENT:TYPE Reference VAlUEsccoovoveeeeeeeoeeeeeeeeees e sesesesnnns, 9=
9-0—MESSAGE:TYPE Reference Valuescocooovvevveveeeeeeeeeeoeees e, 925
9-7T—0/ZONE:DOMAIN Reference VAlUS ..veceiiveeeeeeceeeeeeteeee s eme e oo oe e 9-5

—-—

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

API RPxbb 9b B 0732290 05564895 559 WM

. Recommended Practice for Exploration and Production
Data Digital Interchange
Part 9: DLIS Schema Dictionary

0 Introduction

0.1 This standard contains introductory, normative, and annotative information,
Introductory information comprises everything that precedes Section 1, Scope. The
introductory clauses describe how the publication is organized and provide commentary
on the history and purpose of this standard. Normative information includes the actual
requirements that must be satisfied by any data conforming to the standard. Annotative
information is provided as rationale for and illustrations about the normative information
and does not constitute part of the standard. The standard is completely stated even if all
introductory and annotative information are removed. Annotative information may refer to
terms introduced in Jater paragraphs or parts in order to tie together concepts, i.c., from

time to time its value may increase after the reader has made a complete pass over the
standard,

0.2 Different styles are used to distinguish between normative and annotative
information.

0.3 All normative information is written using this same font, and is contained in either
numbered paragraphs or numbered tables. Normative text is aligned with the left margin

of the page.

0.4 All figures are annotative, and all annotative text is written in unnumbered
paragraphs in Helvetica italic font, indented, as shown here:

This is a paragraph of annolative text. lts purpose is lo include informal
commenlary on the normative information in immediately preceding or
following paragraphs and may include references to or usage of normative
information in other paris of the standard,

1 Scope

This part lists and describes reference values for attributes belonging to the Digital Log
Interchange Standard (DLIS) schema (see Part 8).

2 Authority

Changes to the DLIS schema dictionary are recommended by the API Subcommittee On
Standard Format For Digital Well Data and approved by the Executive Committee on Drill-
ing and Production Practice of the API Exploration and Production Department. Changes
may include addition of new terms or removal of obsolete terms. A term removed in one edi-
tion may be restored in a later edition only if restored with its previous meaning. A new edi-
tion of the DLIS schema dictionary occurs when approved by the Executive Committee and
has an edition number obtained by adding 1 to the previous edition number.

3 Concepts

schema for attributes of either the API basic schema ot the DLIS schema. There is one

. 3.1 The tables presented here contain the reference values defined under the DLIS
table per attribute. Each attribute is identified by its label preceded by the object type to

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

API RPxbbh 96 HB 0732290 055649k 495 N

9-2 APl RECOMMENDED PRACTICE €6, V2

which it belongs and separated by a colon (3). Object types belonging to the API basic .
schemna are identified by the prefix ‘0/ denoting its schema code. Tables are presented
alphabetically by object type first and by attribute second.

3.2 All DLIS schema reference values use representation code IDENT if written in
DLIS schema objects and TIDENT if written in API basic schema objects.

4 Calibration-Measurement Reference Values
4.1 Phase

4.1.1 Currently-defined values correspond to the phase of a calibration measurement.

Table 9-1 — CALIBRATION-MEASUREMENT:PHASE Reference Values

Reference Value Description
AFTER After survey calibration
BEFORE Before survey calibration
MASTER Master calibration

5 0/Channel Reference Values

51 Kind
5.1.1 Currently-defined values correspond to measurements of index channels in and
about the borehole. .
Table 9-2 — 0/CHANNEL:KIND Reference Values
Reference Value Description
ANGULAR-DRIFT Channel value represents angutar drifl.
MEASURED-DEPTH Channel value represents measured depth.
NON-STANDARD Channel value is a non-standard measurement.
RADIAL-DRIFT Channel value represents radial drift.
TIME Channel value represents elapsed time.
VERTICAL-DEPTH Channel value represents vertical depth.

The reference value MEASURED-DEPTH replaces BOREHOLE-DEPTH used
in APl Recommended Practice 66, Version 1. The change is made to achieve
conformance with terminoclogy found in the Pelroleum Industry Data Dictionary
{PIDD).

5.2 Properties

Table 9-3 — O/CHANNEL:PROPERTIES Reference Values

Reference Value Description

AUXILIARY Data not normally included has been provided at specific
request of the consumer, possibly at some additional cost.

AVERAGED Data is the average of two or more other sources.

CALIBRATED A calibration process has been applied to the data.

CHANGED-INDEX Data has been re-sampled along an index that is different from
its original sampling index. For example, data that was
originally sampled according to time is re-sampled according to

depth, or data originally sampled according to measured depth
is re-sampled according o vertical depth.

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

API RP*bb Sb EE 0732290 0556497 321 W

EXPLORATION ANO PRODUCTION DATA DIGITAL INTERCHANGE, PART 9: DLIS SCHEMA DICTIONARY

9-3
. Table 9-3 — 0/CHANNEL:PROPERTIES Reference Values (Continued)
Reference Value Description
COMPUTED Data is the output of a transform, e.g., function former, based on

DEAD-TIME-CORRECTED

DEPTH-MATCHED

DERIVED

ENVIRONMENTALLY-CORRECTED

FILTERED

HOLE-SIZE-CORRECTED

INCLINOMETRY-CORRECTED

LITHOLOGY-CORRECTED

LOCAL-COMPUTATION

LOCALLY-DEFINED

MODELLED

MUD-CORRECTED

MUDCAKE-CORRECTED

NORMALIZED

. OVER-SAMPLED

PATCHED

PRESSURE-CORRECTED

PROPRIETARY

RE-SAMPLED

SALINITY-CORRECTED

SAMPLED-DOWNWARD

SAMPLED-UPWARD
SPEED-CORRECTED

SPLICED
SQUARED

STACKED

STANDARD-DEVIATION

STANDOFF-CORRECTED
TEMPERATURE-CORRECTED

UNDER-SAMPLED

—-—

input data from a single tool.
Data has been corrected for dead time.

Data has been aligned along its depth index against a reference
data source.

Data is an output of empirical equations or is the solution of log
response equations based on input data from more than one
tool,

All known borehole comrections have been applied to the data.
A filtering process has been applied 1o the data.

Data has been comrected for hole size effect based on the value
of a hole size input.

Data has been comected to standard directional references (ver-
tical axis and North axis).

Data has been corrected or computed based on the value of a
matrix lithology parameter.

Data is the result of locally-defined computational expressions.
Such data is normally experimental.

Object’s name has been created by the operator. This name
might not be dictionary-controlled and may have no semantic
association with the object’s data.

Data is the output of a theoretical model and is not derived from
any measured quantity.

Data has been corrected for effects of mud.
Data has been corrected for mudeake effect.

Data has been comrected so that its range corresponds to a pre-
scribed norm.

Interpolated data samples have been added to the original data
to align this data with other data.

Oniginal data values have been replaced at specific levels. This
is normally done to remove spurious values (c.g., spikes),

Data has been correcied for hydrostatic pressure (mud weight).
Data is proprietary to the producer and is not warranted for use
by the consumer.

Data has been resampled along its original index. For example,
the original index values may be wrong. Using a curve-fit, it
may be possible to compute new data values that fit the original
signal more accurately along the original index.

Data has been corrected for salinity effect.

Original sampling direction is downward,

Original sampling direction is upward.

Data has been corrected for variations of the downhole tool
speed.

Data has been obtained by concatenating two or move other data
Sources.

Data is the result of a squaring process, i.e., a process that con-
verts a smooth function into a step function.

Data is the sum of two or more other data sources.

Data represents the estimated deviation, due to environmental
factors or incoherence of the computational model, of another
data source.

Data has been corrected for standoff effect.

Data has been corrected for temperature effect based on the
value of a temperature source.

Some of the original data samples have been discarded to
reduce the amount of data or to align this data with other data.

COPYRI GHT 2000 Anerican PetroleumlInstitute

I nformati on Handl i ng Servi ces,

2000

9-4

API RPxbb

5L W@ 0732290 0556698 2kd W

APl RECOMMENDED PRACTICE 66, V2

6 0/Computation Reference Values

6.1

Properties

See Table 9-3.

7 Equipment Reference Values

7.1

Location

Table 9-4 — EQUIPMENT:LOCATION Reference Values

Reference Value

Description

LOGGING-SYSTEM

Equipment is on or in the logging system unil.

REMOTE Equipment is on the surface away from the rig and logging unit system.

RIG Equipment is on the rig.

WELL Equipment is in the borehole.

7.2 Type
Table 9-5 — EQUIPMENT:TYPE Reference Values
Reference Value Description

ADAFPTER Adapter
BOARD Processor board
BOTTOM-NOSE Bottom nose
BRIDLE Bridle
CABLE Cable
CALIBRATOR Calibrator
CARTRIDGE Cartridge
CENTRALIZER Centralizer
CHAMBER Sample chamber
CUSHION ‘Water cushion
DEPTH-DEVICE Depth measuring device
DISPLAY Display
DRAWER Processor drawet
EXCENTRALIZER Excentralizer
EXPLOSIVE-SOURCE Explosive source
FLASK Flask
GEOPHONE Geophone
GUN Gun
HEAD Head
HOUSING Housing
JIG Calibration jig
JOINT Joint

NUCLEAR-DETECTOR
PACKER

PAD

PANEL

POSITIONING
PRESSURE-GAUGE
PRINTER
RADIOACTIVE-SOURCE
SHIELD

SIMULATOR

SKID

Nuclear detector
Packer

Pad

Panel

Positioning device
Pressure gauge
Printer
Radioactive source
Shieid

Simulator

Skid

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

-

API RPxbb 9 EM 0732290 055L899 1Ty EE

EXPLORATION AND PRODUCTION DATA DIGITAL INTERCHANGE, PART 9: DLIS ScHEMA DICTIONARY

9-5
. Table 9-5 — EQUIPMENT:TYPE Reference Values (Continued)
Reference Value Description
SONDE Sonde
SPACER Spacer
STANDOFF Standoff
SYSTEM Processor system
TOOL Tool
TOOL-MODULE Tool module
TRANSDUCER Transducer
VIBRATION-SOURCE Vibration source

8 Message Reference Values

81 Type
Table 9-6 — MESSAGE:TYPE Reference Values
Reference Value Description
COMMAND Operator command
RESPONSE Operator response
SYSTEM System message

9 (/Parameter Reference Values

9.1 Properties

. See Table 9-3.

10 0/Zone Reference Values

10.1 Domain

Table 9-7 — 0/ZONE:DOMAIN Reference Values

Reference Value Description
MEASURED-DEPTH Zone inlerval is measured depth,
TIME Zone interval is clapsed time.
VERTICAL-DEPTH Zone interval is vertical depth,

The reference value MEASURED-DEPTH replaces BOREHOLE-DEFPTH used
in APl Recommended Practice 66, Version 1. The change is made to achieve
conformance with terminoclogy found in the Petroleumn Industry Data Dictionary
{PIDD).

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

API RPxbkb 9 W@ 0732290 055k900 74b EN

Recommended Practices for
Exploration and Production Data
Digital Interchange

Appendix A: Organization Codes

Exploration and Production Department

. APl RECOMMENDED PRACTICE €6, V2
SECOND EDITION, JUNE 1996

American
. L Petroleum

Institute

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

API RPxEL 95 EM 0732290 055L901 L&2 WA

. CONTENTS

0 INTRODUCTIONcoociiiiiisiincemmenenreesenstsscentistsseneeseresstsesssssssesenesesassessasensssas
I SCOPE ...t ssssss s e beses b st s s e s eass et nns

Table
A-1—0Organization COGESuiiiriieeeninsresssesesereissssie o rmsssssssesesasssssesssssesssseses

—

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handl i ng Services, 2000

API RPxbb 9 EE 0732290 0556902 519 ma

Recommended Practice for Exploration and Production
Data Digital Interchange
Appendix A: Organization Codes

0 Introduction

0.1 This standard contains introductory, normative, and annotative information.
Introductory information comprises everything that precedes Section 1, Scope. The
introductory clauses describe how the publication is organized and provide commentary
on the history and purpose of this standard. Normative information includes the actual
requirements that must be satisfied by any data conforming to the standard. Annotative
information is provided as rationale for and illustrations about the normative information
and does not constitute part of the standard. The standard is completely stated even if all
introductory and annotative information are removed. Annotative information may refer to
terms introduced in later paragraphs or parts in order to tie together concepts, i.e., from
time to time its value may increase after the reader has made a complete pass over the
standard.

0.2 Different styles are used to distinguish between normative and annotative
information,

0.3 All normative information is written using this same font, and is contained in either
numbered paragraphs or numbered tables. Normative text is aligned with the left margin
of the page.

04 All figures are annotative, and all annotative text is written in unnumbered
paragraphs in Helvetica italic font, indented, as shown here:

This is a paragraph of annotative text. lts purpose is to includs informal
commentary on the normative information in immediately preceding or
following paragraphs and may include references to or usage of normative
information in other parts of the standard.

1 Scope

Table A-1 contains a list of organization codes assigned by the American Petroleum
Institute, Exploration and Production Department (APl E&P) for use in API Recom-
mended Practice 66.

Several of the organization codes in this appendix are historical in nature and
reffect the well log origins of AP! Recommended Praclice 66,

2 Assignment of Organization Codes

Organization codes are assigned by API Exploration and Production Department, which
maintains the current list of codes. To request a new organization code, contact:

American Petroleumn Institute
Exploration and Production Department
1220 L Street, N.W.
Washington, D.C, 20005
Phone: (202) 682-8000
FAX: (202) 682-8426

—

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

API RPxtb 9 HB 0732290 0556903 455 1B

A-2 ‘ APl RECOMMENDED PRACTICE 66, V2

Table A-1 — Organization Codes

Code Organization
APl Subcommittee On Recommended Format For
Digital Well Data, Basic Schema

1 Operator

2 Driller

3 Mud Logger

10 Analysts, The

20 Baroid

30 Birdwell

40 BPB

50 Brett Exploration

60 Cardinal

65 Center Line Data

66 APl Subcommittee On Recommended Format For

Digital Well Data, DLIS Schema

70 Century Geophysical

77 GG Logging, Massey France
80 Charlene Well Surveying

90 Compagnie de Services Numerique
95 Comprobe

100 Computer Data Processors

110 Computrex

115 COPGO Wood Group

120 Core Laboratories

125 CRC Wireline, Inc.

127 Davis Great Guns Logging, Wichita, KS
129 Digicon Exploration, Ltd.

130 Digigraph

137 Digital Logging Inc., Tulsa, OK
140 Digitech

145 Deines Perforating

150 Dresser Atlas .
160 Earthworm Drilling

170 Electronic Logging Company
180 Elgen

190 El Toro
200 Empire
210 Frontier
215 Geolog
217 Geoshare
220 G O International
230 Gravilog
240 Great Guns Servicing
250 Great Lakes Petroleum Services
260 GTS
268 Guardian Data Seismic Pry. Lid.
270 Guns
280 Halliburton Logging
285 Horizon Production Logging
290 Husky
300 Jetwell
310 Lane Wells
315 Logicom Computer Services
320 Magnolia
330 McCullough Tool
335 Mincom Pry Lid
337 MR-DPTS Lud.
338 NRI1On-Line Inc.
339 Oilware, Inc.
340 Pan Geo Atlas
345 Perfco
350 Perfojet Services
360 Perforating Guns of Canada
362 Petroleum Exploration Computer Consultants, Ltd.
366 Phillips Petroleum Company
70 Petrolenm Information
380 Petrophysics

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

API RPxbb 96 EB 0732290 055bL904 391 W

EXPLORATION AND PRODUCTION DATA DIGITAL INTERGHANGE, APPENDIX A: ORGANIZATION CODES

. Table A-1 — Organization Codes (Continued)

Code Organization

190 Pioneer

395 Q. C. Data Collectors

400 Ram Guns

410 Riley's Datashare

420 Roke

430 Sand Surveys

440 Schlumberger

450 Scientific Software

460 Scismograph Service

462 SEGDEF

463 SEG Technical Standards High Density Media Format
Subcommittee

464 Shell Service Co.

465 Stratigraphic Systems, Inc.

470 Triangle

430 Welex

490 Well Reconnaissance

495 Welisite Information Transfer Specification (WITS)

500 Well Surveys

510 Westem

520 Westronics

525 Winters Wireline

530 Wireline Electronics

540 Worth Well

560 Z & S Consultants Limited

999 Reserved for local schemas

1000 Petrotechnical Open Software Corp.

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handling Services, 2000

API RPxbkEk 9t WM 0732290 0556905 2284 WA

PC-01200—06/96—1M {4E}

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handl i ng Services, 2000

API RPxbb 9 EE 0732290 055b690b LbL4 HH

Additional copies available from API Publications and Distribution;
{202) 682-8375

Information about AP| Publications, Programs and Services is
available on the World Wide Web at: http://www.api.org

American 1220 L Street, Northwest
L Petroleum Washington, D.C. 20005-4070 Order No. GEE002 .
Institute 202-682-8000

COPYRI GHT 2000 Anerican PetroleumlInstitute
I nformati on Handl i ng Services, 2000

